bài1:
cho M=1+2+2^2+2^3+...+2^2016
a)Tính M
b)M có chia hết cho 3;7;15? Vì sao?
Biết xEN :M+1=8^x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
\(M=\dfrac{2^2.3^2.4^2.....20^2}{1.3.2.4.3.5.4.6.5.7.6.8.7.9....19.21}=\)
\(=\dfrac{2^2.3^2.4^2....20^2}{1.2.3^2.4^2....19^2.20.21}=\dfrac{2.20}{21}=\dfrac{40}{21}\)
\(N=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{10}{11}=\dfrac{1}{11}\)
Lời giải:
a. ĐKXĐ: $a\neq \pm 2$
\(M=\frac{(2+a)^2}{(2-a)(2+a)}+\frac{4a^2}{(2-a)(2+a)}-\frac{(2-a)^2}{(2+a)(2-a)}\)
\(=\frac{(2+a)^2+4a^2-(2-a)^2}{(2-a)(2+a)}=\frac{4a(a+2)}{(2-a)(2+a)}=\frac{4a}{2-a}\)
b.
$|a+1|=3\Rightarrow a+1=\pm 3\Rightarrow a=-2$ hoặc $a=-4$
Vì $a\neq \pm 2$ nên $a=-4$
Khi đó: $M=\frac{4a}{2-a}=\frac{4(-4)}{2-(-4)}=\frac{-8}{3}$
c.
Trước tiên cần tìm $a$ để $M$ nguyên đã.
$M=\frac{4a}{2-a}=\frac{8-4(2-a)}{2-a}=\frac{8}{2-a}-4$ nguyên khi $\frac{8}{2-a}$ nguyên
$\Rightarrow 2-a\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow a\in\left\{1; 3; 0; 4; -2; 6; 10; -6\right\}$.
Thử lại thấy $a\in\left\{1; 3; 0; 4\right\}$ thỏa mãn $M$ là số nguyên chia hết cho $4$
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
a)đề \(\Rightarrow2M=2^2+2^3+2^4+...+2^{2019}
\Rightarrow M=2^{2019}-2\)
b)đề \(\Rightarrow M=(2+2^2)+(2^3+2^4)+...+(2^{2017}+2^{2018})\)
\(\Rightarrow M=2.3+3.\left(2^3\right)+3.2^4+...+3.2^{2017}\)
\(\Rightarrow M⋮3\left(đpcm\right)\)