K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

a: Để hàm số đồng biến trên R thì \(m^2-4>0\)

=>\(m^2>4\)

=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)

=>\(m^2< 4\)

=>-2<m<2

12 tháng 12 2023

a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đồng biến

⇔ 3m - 1 > 0

⇔ 3m > 1

⇔ m > 1313 

Vậy m > 1313 thì hàm số y = (3m - 1)x + 2 đồng biến

b) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 nghịch biến

⇔ 3m - 1 < 0

⇔ 3m < 1

⇔ m < 1313 

Vậy m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến

c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đi qua điểm A(2; 3) nên thay x = 2; y = 3 vào hàm số y = (3m - 1)x + 2 ta được:

3 = (3m - 1).2 + 2 (m ≠≠ 1313)

⇔ 3 = 6m - 2 + 2

⇔ 3 = 6m

⇔ m = 1212 (t/m)

Vậy m =  1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)

DT
12 tháng 12 2023

loading... 

10 tháng 5 2022

refer

10 tháng 5 2022

Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau

\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)

Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)

\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)

\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)

25 tháng 12 2021

Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4

=>m=-2

30 tháng 11 2023

Bài 1:

\(y=\left(m-1\right)x^2+2mx-3m+1\)

\(=mx^2-x^2+2mx-3m+1\)

\(=m\left(x^2+2x-3\right)-x^2+1\)

Tọa độ điểm cố định mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}x^2+2x-3=0\\y=-x^2+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+3\right)\left(x-1\right)=0\\y=-x^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\y=-x^2+1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3=0\\y=-x^2+1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y=-x^2+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-\left(-3\right)^2+1=-9+1=-8\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1^2+1=0\end{matrix}\right.\end{matrix}\right.\)

 

 

NV
17 tháng 7 2021

Với \(m=-2\) ko thỏa mãn

Với \(m\ne-2\) hàm \(f\left(x\right)\) là bậc nhất trên bậc nhất nên luôn đơn điệu trên khoảng đã cho

\(\Rightarrow\) min max rơi vào 2 đầu mút

\(f\left(2\right)=m+4\) ; \(f\left(3\right)=\dfrac{m+6}{2}\)

\(\Rightarrow\left|m+4-\dfrac{m+6}{2}\right|=2\Leftrightarrow\)

\(\Leftrightarrow m+2=\pm4\Rightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\)

17 tháng 7 2021

Tại sao m = -2 lại không thỏa mãn ạ?

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)

Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)

=>m-5=2

=>m=7

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

=>2m-1=1

=>2m=2

=>m=1

20 tháng 11 2023

1: Bạn bổ sung đề bài đi bạn

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)

=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)

=>OB=4

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{4}{\left|2m-1\right|}=4\)

=>\(\dfrac{1}{\left|2m-1\right|}=1\)

=>\(\left|2m-1\right|=1\)

=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

20 tháng 11 2023

Với m=1 nha bn mik thíu