K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x/7=y/13

=>x=7m;y=13m

x+y=40

=>7m+13m=40

=>20m=40

=>m=2

=>x=2.7=14

y=40-14=26

Vậy x=14;y=26

3 tháng 10 2015

\(\frac{x}{7}=\frac{y}{13}\)

=> 13x=7y

=> x=\(\frac{7}{13}y\)

Vi x+y=40

=> \(\frac{7}{13}y+y=40\)

=> \(\frac{20}{13}y=40\)

=> y=26

=> x= 40-26=14

23 tháng 8 2020

ĐKXĐ: \(a\ge-\frac{1}{2};a\ne0\)

Ta có \(\frac{a}{x+y}=\frac{7}{x+z}=\frac{7-a}{z-x}=\frac{7+a}{2x+y+z}\)

Do đó \(\frac{13}{\left(z-x\right)\left(2x+y+z\right)}=\frac{49}{\left(x+z\right)^2}=\frac{7-a}{z-x}\cdot\frac{7+a}{2x+y+z}=\frac{49-a^2}{\left(z-x\right)\left(2x+y+z\right)}\)

Do đó \(13=49-a^2\Leftrightarrow a^2=36\Leftrightarrow\orbr{\begin{cases}a=6\left(tm\right)\\a=-6\left(ktm\right)\end{cases}}\)

Vậy a=6

25 tháng 3 2018

Bài 1 : 

Ta có : 

\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(A=\frac{3}{5}+\frac{2}{5}\)

\(A=1\)

\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Đo đó : 

\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)

Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

25 tháng 3 2018

bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà 

câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2

(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai) 

16 tháng 9 2017

ta thấy tử số k thay đổi và mẫu số thì giảm đi 

được phân số mới là 7/10 và 7/13 vậy tử số bằng nhau là hiển nhiên nhưng mẫu số đã giảm 13 - 10 = 3 phần

vậy 1 phần là :

21 : 3 = 7 

y là :

7 x 10 + 21 = 91 

vậy x là 7 x 7 = 49 

phân số 49/91 là phân số cần tìm

kiểm tra :

49/91 = 7/13 

trừ mẫu số 21 đơn vị thì được 49/70 

49/70 = 7/10

k mk nha

16 tháng 9 2017

     Bài giải

Ta có : \(\frac{x}{y}=\frac{7}{10}\)

       \(\frac{x}{y-21}=\frac{7}{13}\)

x/y trừ đi x/y - 21 thì sẽ bằng luôn là 21

Tiếp theo ta tính chênh lệch giữa hai phân số để ra số phần của 21 so với y:

\(\frac{7}{10}-\frac{7}{13}=\frac{91-70}{130}=\frac{21}{130}\)

Từ đó ta tính được y:

\(21:\frac{21}{130}=130\)

Tiếp theo ta sẽ tìm a,ghép 130 vào y của x/y = 7/13

\(\Rightarrow\frac{x}{130}=\frac{7}{13}\)

\(\Rightarrow x=\frac{130}{13}\cdot7=70\)

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

10 tháng 5 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x>7\\y>-6\end{matrix}\right.\)

- Đặt \(\frac{1}{\sqrt{x-7}}=a,\frac{1}{\sqrt{y+6}}=b\) ( \(a,b\ne0\) ) vào hệ phương trình ta được :

\(\left\{{}\begin{matrix}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{matrix}\right.\)

( đoạn này ruễ tự giải nhoa )

=> \(\left\{{}\begin{matrix}a=\frac{1}{3}\\b=\frac{1}{6}\end{matrix}\right.\)( TM )

- Thay lại \(\frac{1}{\sqrt{x-7}}=a,\frac{1}{\sqrt{y+6}}=b\) vào hệ phương trình ta được :

\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x-7=9\\y+6=36\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=16\\y=30\end{matrix}\right.\) ( TM )

Vậy .........

10 tháng 5 2020

THẠNKS

14 tháng 9 2020

\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\frac{2}{12}-\frac{10}{24}+\frac{14}{39}}\)

\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\left(\frac{2}{12}+\frac{10}{24}-\frac{14}{39}\right)}\)

\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\frac{2}{3}\left(\frac{1}{4}+\frac{5}{8}-\frac{7}{13}\right)}\)

\(B=\frac{x}{y}+\frac{1}{-\frac{2}{3}}\)

\(B=\frac{x}{y}-\frac{3}{2}\)

Thế x = 0, 5 = 1/2 ; y = 3 ta được :

\(B=\frac{\frac{1}{2}}{3}-\frac{3}{2}=\frac{1}{6}-\frac{9}{6}=-\frac{8}{6}=-\frac{4}{3}\)

14 tháng 9 2020

Ta có:\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{\frac{-2}{12}-\frac{10}{24}+\frac{14}{39}}\)

\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\left(\frac{2}{12}+\frac{10}{24}-\frac{14}{39}\right)}\)

\(B=\frac{x}{y}+\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{-\frac{2}{3}\left(\frac{1}{4}+\frac{5}{8}-\frac{7}{13}\right)}\)

\(B=\frac{x}{y}+\frac{1}{-\frac{2}{3}}\)(Do\(\frac{1}{4}+\frac{5}{8}-\frac{7}{13}\ne0\))

\(B=\frac{x}{y}-\frac{3}{2}\)

Thay x = 0,5; y = 3 vào B ta được:

\(B=\frac{0,5}{3}-\frac{3}{2}\)

\(B=\frac{1}{6}-\frac{3}{2}\)

\(B=\frac{1}{6}-\frac{9}{6}\)

\(B=-\frac{4}{3}\)

Vậy\(B=-\frac{4}{3}\)tại x = 0,5; y = 3

Linz

14 tháng 8 2019

a) Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=a\\\frac{1}{y-1}=b\end{matrix}\right.\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}5a+b=10\\a-3b=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15a+3b=30\\a-3b=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-3b=18\\16a=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=3\\\frac{1}{y-1}=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{4}{5}\end{matrix}\right.\)

Vậy...

b) Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=a\\\frac{1}{\sqrt{y+6}}=b\end{matrix}\right.\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\5a+3b=\frac{13}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\51a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{306}\\b=\frac{-43}{612}\end{matrix}\right.\)( loại vì \(a,b>0\) )

Vậy hệ vô nghiệm

Is that true .-.

14 tháng 8 2019

Cho xin solve lại câu b)

hpt \(\Leftrightarrow\left\{{}\begin{matrix}21a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5a+3b=\frac{13}{6}\\41a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{246}\\b=\frac{8}{123}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=\frac{97}{246}\\\frac{1}{\sqrt{y+6}}=\frac{8}{123}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{126379}{9409}\\y=\frac{14745}{64}\end{matrix}\right.\)

Vậy...