K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 6 2023

Đề không rõ ràng. Bạn xem lại.

11 tháng 2 2022

A = { 12; 13; 14 }

\(A=\left\{12;13;14\right\}\)

Trả lời :

A = { 1 ; 2 }

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:
a. $G=\left\{1;2;3;4;5;6\right\}$

b. $H=\left\{3;4;5;6;7;8\right\}$

c. $I=\left\{13;14;15;16;17;18\right\}$

d. $K=\left\{65; 70; 75;80;85;90\right\}$

16 tháng 7 2021

Đề sai nha bạn, mk sửa lại G={n\(\in\)N|0<n<7}

a) G={1; 2; 3; 4; 5; 6}

b) H={3; 4; 5; 6; 7; 8}

c) I={13; 14; 15; 16; 17; 18}

d) K={65; 70; 75; 80; 85; 90}

bn đăng rồi mà

16 tháng 7 2021

khi nào

G={1,2,3,4,5,6}

H={3,4,5,6,7,8}

I={13,14,15,16,17,18}

K={65;70;75;80;85;90}

 

3 tháng 7 2017

\(A=\left\{1;4;9;16\right\}\)

`#3107.101107`

a,

\(\text{A = }\left\{x\in R\text{ | }\left(2x-x^2\right)\left(3x-2\right)=0\right\}\)

`<=> (2x - x^2)(3x - 2) = 0`

`<=>`\(\left[{}\begin{matrix}2x-x^2=0\\3x-2=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x\left(2-x\right)=0\\3x=2\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2-x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy, `A = {0; 2; 2/3}`

b,

\(\text{B = }\left\{x\in R\text{ | }2x^3-3x^2-5x=0\right\}\)

`<=> 2x^3 - 3x^2 - 5x = 0`

`<=> x(2x^2 - 3x - 5) = 0`

`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-3x-5=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-2x+5x-5=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x^2-2x\right)+\left(5x-5\right)=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2x\left(x-1\right)+5\left(x-1\right)=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2x+5=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)

Vậy, `B = {-5/2; 0; 1}.`

c,

\(\text{C = }\left\{x\in Z\text{ | }2x^2-75x-77=0\right\}\)

`<=> 2x^2 - 75x - 77 = 0`

`<=> 2x^2 - 2x + 77x - 77 = 0`

`<=> (2x^2 - 2x) + (77x - 77) = 0`

`<=> 2x(x - 1) + 77(x - 1) = 0`

`<=> (2x + 77)(x - 1) = 0`

`<=>`\(\left[{}\begin{matrix}2x+77=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=-77\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=-\dfrac{77}{2}\\x=1\end{matrix}\right.\)

Vậy, `C = {-77/2; 1}`

d,

\(\text{D = }\left\{x\in R\text{ | }\left(x^2-x-2\right)\left(x^2-9\right)=0\right\}\)

`<=> (x^2 - x - 2)(x^2 - 9) = 0`

`<=>`\(\left[{}\begin{matrix}x^2-x-2=0\\x^2-9=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2+x-2x-2=0\\x^2=9\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}\left(x^2+x\right)-\left(2x+2\right)=0\\x^2=\left(\pm3\right)^2\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x\left(x+1\right)-2\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x=\pm3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=2\\x=-1\\x=\pm3\end{matrix}\right.\)

Vậy, `D = {-1; -3; 2; 3}.`