Cho 3 số a; b; c tỉ lệ với các số m; m+n; m+2n
Chứng minh rằng nếu n \(\ne\) 0 thì ta có 4(a - b)(b - c) = (c - a)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài
\(A+1⋮2;3;4;5;6\Rightarrow A+1=BC\left(2;3;4;5;6\right)\left(A< 1000\right)\)
\(BCNN\left(2;3;4;5;6\right)=60\)
A lớn nhất khi A+1 lơn nhất thỏa mãn \(A+1< 1001\)
\(A+1=60.k\) với k là số nguyên dương lớn nhất thỏa mãn
\(A+1=60k< 1001\Rightarrow k\le16\Rightarrow k=16\)
\(\Rightarrow A+1=60.16=960\Rightarrow A=959\)
Tổng các chữ số của A là
9+5+9=23
Bài 1:
Gọi số phải tìm là a ( a ϵ N*)
Ta có: a+42 chia hết cho 130 và 150
=> a + 42 ϵ BC(130;135)
=> a= 1908; 3858; 5808; 7758; 9708
a) Ta có:
a = 3k + r
b = 3h + r
(Chú ý k > h vì a > b)
a - b = 3k + r - 3h - r
= 3(k - h)
\(\Rightarrow\)
b) Đề sai. Vì nếu a : 3 dư 2 và b chia hết cho 3 thì tổng a + b sẽ không chia hết cho 3
a: A chia hết cho 9
=>4+a+5+1+2 chia hết cho 9
=>a=6
c: =>1-(x+7/18):3/4=0
=>(x+7/18):3/4=1
=>x+7/18=3/4
=>x=13/36
Ta có a : b : c = m : (m + n) : (m + 2n) Hay \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}=\frac{a-b}{m-\left(m+n\right)}=\frac{b-c}{\left(m+n\right)-\left(m+2n\right)}=\frac{c-a}{\left(m+2n\right)-m}\)
=> \(\frac{a-b}{-n}=\frac{b-c}{-n}=\frac{c-a}{2n}\)=> \(\frac{-2\left(a-b\right)}{2n}=\frac{-2\left(b-c\right)}{2n}=\frac{c-a}{2n}\)
=> -2(a - b) = -2(b - c) = c - a
=> (c- a)2 = [-2(a - b)].[-2(b - c)] = 4(a - b)(b - c)