K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB~ΔAEC

=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

=>\(AD\cdot AC=AB\cdot AE\)

b: Xét ΔADE và ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

\(\widehat{DAE}\) chung

Do đó: ΔADE~ΔABC

c: Ta có: ΔADE~ΔABC

=>\(\widehat{AED}=\widehat{ACB}\)

mà \(\widehat{AED}=\widehat{IEB}\)(hai góc đối đỉnh)

nên \(\widehat{IEB}=\widehat{ICD}\)

Xét ΔIEB và ΔICD có

\(\widehat{IEB}=\widehat{ICD}\)

\(\widehat{I}\) chung

Do đó: ΔIEB~ΔICD

=>\(\dfrac{IE}{IC}=\dfrac{IB}{ID}\)

=>\(IE\cdot ID=IB\cdot IC\)

6 tháng 5 2020

Câu hỏi là gì bạn?

b) Xét tứ giác BEDC có 

\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)

nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có

\(\widehat{EAC}\) chung

Do đó: ΔAEC đồng dạng với ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AD\cdot AC\)

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

DO đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

=>\(\widehat{EDH}=\widehat{EAH}\)

=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)

Xét tứ giác HDCM có

\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)

=>HDCM là tứ giác nội tiếp

=>\(\widehat{HDM}=\widehat{HCM}\)

=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)

=>DB là phân giác của \(\widehat{EDM}\)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

=>AB/AC=AD/AE

=>AB*AE=AC*AD

b: Gọi giao của HK với BC là N

=>N là trung điểm của HK

Xét ΔHKM có HN/HK=HI/HM

nên NI//KM

=>KM//BC

C nằm trên trung trực của HK

=>CH=CK

Xét tứ giác BHCM có

I là trung điểm chung của BC và HM

=>BHCM làhbh

=>BM=CH=CK

=>BKMC là hình thang cân

31 tháng 1 2016

a)Xét tam giac AEC và tam giác ABD có

A chung; hai goc vuong

=>tam giac AEC và tam giác ABD dong dang

=>AE/AD=AC/AB=>AE*AB=AC*AD

Äá» thi vào 10 môn Toán có Äáp án | Äá» thi môn Toán vào 10 có Äáp án

a) Xét tứ giác BEDC có:

∠BEC = 90o (CE là đường cao)

∠BDC = 90o (BD là đường cao)

=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEDC là tứ giác nội tiếp

b) Xét ΔAEC và ΔADB có:

∠BAC là góc chung

∠AEC = ∠BDA = 90o

=> ΔAEC ∼ ΔADB (g.g)

\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow\text{AE.AB = AC.AD}\)

c) Ta có:

∠FBA = 90o (góc nội tiếp chắn nửa đường tròn)

=>FB⊥AB

Lại có: CH⊥AB (CH là đường cao)

=> CH // FB

Tương tự,( FCA) = 90o (góc nội tiếp chắn nửa đường tròn)

=>FC⊥AC

BH là đường cao => BH ⊥AC

=> FC // BH

Xét tứ giác CFBH có:

CH // FB

FC // BH

=> Tứ giác CFBH là hình bình hành.

Mà I là trung điểm của BC

=> I cũng là trung điểm của FH

Hay F, I, H thẳng hàng.

2) Diện tích xung quanh của hình trụ:

S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)

=> R = 8 cm ; h = 8cm

Thể tích của hình trụ là

V = πR2 h = π.82.8 = 512π (cm3)

HÌNH TRONG THỐNG KÊ HỎI ĐÁP NHA VỚI LẠI MIK TRẢ LỜI TOÀN CÂU KHÓ MÀ CHẲNG CÓ CÁI GP NÀO

VCM JACK  trả lok đ nè