Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
b) Xét tứ giác BEDC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.
a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.
b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.
Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.
Vậy ta có đpcm.
c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.
Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.
Khi đó FH . FN = FE . FD = FB . FC.
Suy ra tứ giác BHNC nội tiếp.
Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).
Do đó tứ giác DNMC nội tiếp.
Tương tự tứ giác ENMB nội tiếp.
Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.
Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).
(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).
a:
Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=180^0\)
nên ADHE là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
Do đó: ΔABD\(\sim\)ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{EAC}\) chung
Do đó: ΔAEC đồng dạng với ΔADB
=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
=>\(AE\cdot AB=AD\cdot AC\)
Xét ΔABC có
CE,BD là đường cao
CE cắt BD tại H
DO đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp
=>\(\widehat{EDH}=\widehat{EAH}\)
=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)
Xét tứ giác HDCM có
\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)
=>HDCM là tứ giác nội tiếp
=>\(\widehat{HDM}=\widehat{HCM}\)
=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)
=>DB là phân giác của \(\widehat{EDM}\)