Cho tam giác ABC vuông ở A, đường cao AH; biết AB = 3cm, AC = 4cm a.Tinh AH, HB b. Tính sinB, sinC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
Ta có: A H 2 = HB.HC (cmt)
=> 16 2 = 8.HC => HC = 32cm
=> BC = BH + HC = 8 + 32 = 40 cm
Nên diện tích tam giác ABC là S A B C = 1 2 .AH.BC = 1 2 .16.40 = 320cm2
Đáp án: A
Câu 1: Cả 4 câu đều đúng
Câu 2:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4
Với BH = 9cm, HC = 16cm => BC = BH + HC = 9 + 16 = 25 cm
Ta có: A H 2 = HB.HC (cmt)
=> A H 2 = 9.16 = 144 => AH = 12cm
Nên diện tích tam giác ABC là S A B C = 1 2 .AH.BC = 1 2 .12.25 = 150 c m 2
Đáp án: C
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBAC đồng dạng với ΔBHA
=>BA/BH=BC/BA
=>BA^2=BH*BC
c: Xét ΔHAC vuông tại H và ΔHBA vuông tại H có
góc HAC=góc HBA
=>ΔHAC đồng dạng với ΔHBA
=>HA/HB=HC/HA
=>HA^2=HB*HC
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow4HB=HC\)
Xét tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\)( hệ thức lượng trong tam vuông)
\(\Rightarrow14^2=HB.4HB\Rightarrow HB=7\left(cm\right)\Rightarrow HC=4HB=28\left(cm\right)\Rightarrow BC=HB+HC=35\left(cm\right)\)Xem tam giác ABC vuông tại A có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=HB.BC\\AC^2=HC.BC\end{matrix}\right.\)(Hệ thức lượng trong tam giác vuông)
\(\Rightarrow\left\{{}\begin{matrix}AB^2=7.35\\AC^2=28.35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\\AC=14\sqrt{5}\end{matrix}\right.\)
Ta có: \(P_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow4\cdot HB^2=14^2=196\)
\(\Leftrightarrow HB^2=49\)
\(\Leftrightarrow HB=7\left(cm\right)\)
\(\Leftrightarrow HC=28\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)
Ta có: HAB + HAC = BAC = 90 ∘
Mà: HBA + HAB = 90 ∘ (2 góc phụ nhau)
⇒ H A C ^ = H B A ^
Xét 2 tam giác vuông AHB và CHA ta có: H A C ^ = H B A ^ (cmt)
=> ΔAHB ~ ΔCHA (g - g)
⇒ A H C H = H B H A ⇒ A H 2 = H B . H C
Đáp án: B
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=12/5=2,4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot5=3^2=9\)
=>BH=9/5=1,8(cm)
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(sinB=\dfrac{4}{5}\)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(sinC=\dfrac{3}{5}\)