K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Với BH = 9cm, HC = 16cm => BC  = BH + HC = 9 + 16 = 25 cm

Ta có: A H 2 = HB.HC (cmt)

=> A H 2 = 9.16 = 144 => AH = 12cm

Nên diện tích tam giác ABC là   S A B C = 1 2 .AH.BC = 1 2 .12.25 = 150 c m 2

Đáp án: C

25 tháng 4 2017

Hiện tai  minh chi moi giai được cau a thoi.                                                                      a, Áp dung định lý py-ta-go cho tam giác Vuông ABC:                                             AB^2+AC^2=BC^2.                                        6^2+8^2=BC^2                                         36+64=100.                                                    vay can100=10cm

25 tháng 4 2017

A B C H D

a/ Làm luôn cho hoàn chỉnh:

Xét tam giác ABC vuông tại A có:

\(AB^2+AC^2=BC^2\left(pytago\right)\)

\(6^2+8^2=BC^2\)

\(36+64=BC^2\)

\(100=BC^2\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

b/ Xét tam giác ABC và tam giác AHB có:

    \(\hept{\begin{cases}\widehat{ABC}:chung\\\widehat{BAC}=\widehat{AHB}=90^0\left(gt\right)\end{cases}}\)

=> tam giác ABC ~ tam giác HBA (g.g)

c/ Từ chứng minh câu b

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow AB^2=BC.BH\)

* Tính \(BH\):

Sử dụng chính tỉ số bên trên: \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow\frac{6}{BH}=\frac{10}{6}\Rightarrow BH=\frac{6.6}{10}=3,6\left(cm\right)\)

* Tính \(HC\):

\(HC=BC-HB=10-3,6=6,4\left(cm\right)\)

d/ Xét tam giác ABD và tam giác ACD có:

    \(\hept{\begin{cases}\widehat{BAD}=\widehat{DAC}\left(gt\right)\\\frac{BD}{AB}=\frac{DC}{AC}\left(tinhchatphangiac\right)\end{cases}}\)

=> tam giác ABD ~ tam giác ACD (c.g.c)

Tới đây bí rồi, để nghĩ tiếp

2 tháng 6 2020

đấu 

~ là đấu đồng dạng nha

10 tháng 4 2017

:a) Xét tam giác ABC có BC2=AB2+AC2 ( Định lý Py-ta-go)

Thay số:BC2=6 2+8 2 BC2=36+64=100 =>BC=10(cm)

b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2

Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:

Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)