K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

với x+y+z=0 thì \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0< =>\)x3 +y3 +z3 =3xyz

nếu đặt x=a2; y=b2 ;z=c2 thì ta cần có a2 +b2 +c2 =0 thì sẽ có a6 +b6 +c6 =3a2b2c2

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0< =>\frac{ab+bc+ca}{abc}=0< =>ab+bc+ca=0.\)

a+b+c=0 <=> (a+b+c)2 =0 <=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0< =>a^2+b^2+c^2=0.\)(chứng minh xong)

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

17 tháng 8 2020

\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)

\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)

Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$

$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b)(c+a)(c+b)=0$

$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$

Không mất tổng quát giả sử $a+b=0$

$\Leftrightarrow a=-b$.

Khi đó:

$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$

$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.

8 tháng 8 2023

Giúp vs mn ơi

8 tháng 8 2023

Cái cuối là c(1/a+1/b) nha mn

3 tháng 3 2015

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

<=>c(a+b)(a+b+c)=-ab(a+b)

<=>(a+b)(ac+bc+c2)+ab(a+b)=0

<=>(a+b)(ac+bc+ab+c2)=0

<=>(a+b)(a+c)(c+b)=0

       a+b=0

<=> b+c=o

       c+a=0
 

18 tháng 3 2022

\(\dfrac{1}{a^2+b^2-c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}\)

\(=\dfrac{1}{a^2+b^2-\left(-a-b\right)^2}+\dfrac{1}{b^2+c^2-\left(-b-c\right)^2}+\dfrac{1}{c^2+a^2-\left(-c-a\right)^2}\)

\(=\dfrac{1}{a^2+b^2-\left(a+b\right)^2}+\dfrac{1}{b^2+c^2-\left(b+c\right)^2}+\dfrac{1}{c^2+a^2-\left(c+a\right)^2}\)

\(=\dfrac{1}{a^2+b^2-a^2-2ab-b^2}+\dfrac{1}{b^2+c^2-b^2-2bc-c^2}+\dfrac{1}{c^2+a^2-c^2-2ac-a^2}\)

\(=\dfrac{1}{-2ab}+\dfrac{1}{-2bc}+\dfrac{1}{-2ac}\)

\(=\dfrac{c+a+b}{-2abc}=\dfrac{0}{-2abc}=0\)

18 tháng 3 2022

ta có a+b+c=0=>a+b=-c =>(a+b)^2=c^2=> a^2+b^2=c^2-2ab =>a^2+b^2-c^2=-2ab
tương tự ta sẽ có

-1/2ab-1/2bc-1/2ac =-c/2abc- a/2abc- b/2abc =0 (vì a+b+c=0)