K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Câu 1) Ta có\(a^3+2b^2-4b+3=0\Leftrightarrow a^3=-2.\left(b-1\right)^2-1\)\(\le-1\Rightarrow a^3\le-1\Rightarrow a\le-1\Rightarrow a^2\ge1\)

\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\)\(\Leftrightarrow\left(b-1\right)^2\le0\)

Mà \(\left(b-1\right)^2\ge0\)với mọi b nên \(\left(b-1\right)^2=0\)\(\Rightarrow b=1\)

Thay b=1 vào 2 pt ban đầu được \(\hept{\begin{cases}a^3+2-4+3=0\\a^2+a^2-2=0\end{cases}}\)<=> a=1(tm)

Vậy (a,b)=(1;1)

Câu 2 bạn xem ở đây nhé http://olm.vn/hoi-dap/question/716469.html

NV
19 tháng 7 2021

Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)

\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)

\(=\left(a^2+b^2\right)\left(2-a\right)\)

Do \(a^2+b^2\ge0;\forall a;b\) nên:

\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)

\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)

\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)

\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)

24 tháng 10 2023

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

26 tháng 11 2021

\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)

26 tháng 11 2021

D . \(2.\left(a^2-b^2\right)\)

4 tháng 11 2022

Ta có : a2 + 2ab + b2 + b2 - 4b +4 = 0
<=> ( a + b )2 + ( b - 2 )2 = 0  

mà: ( a + b )2≥0 ∀a,b

       ( b - 2 )2 ≥0 ∀​b

Dấu "=" xảy ra khi :

a + b =0  
b - 2 =0
<=> a + 2 =0 <=> a = -2
       b =2

Thay a = -2 ; b =2 vào ta có:

M= 22 +7.2.2 + \(\dfrac{52}{-2-2}\) 

M= 4 +28- \(\dfrac{52}{4}\) 
M= 4 +28 - 13 = 19

28 tháng 2 2018

Đáp án là A 

8 tháng 8 2021

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

8 tháng 8 2021

hình như sai đề rồi ạ, đề của em là a2 + b2 - ca - cb = 0 ạ