cho tam giác ABC có góc A = 90 AB= 15 cm AC= 20 cm
đường cao AH Từ H kẻ HD vuông góc AB & HE vuông góc AC CMR: AH2= AD.AB và AD.AB=AE.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
nên AEHD là hình chữ nhật
Suy ra: EH//AD; EH=AD: EA//HD; EA=HD
b: Vì AEHD là hình chữ nhật
nên AH=DE
c: Ta có: AEHD là hình chữ nhật
mà O là giao của hai đường chéo
nên OA=OE=OD=OH
a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồg dạng vơi ΔAHB
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2
=>AE*AC=AD*AB
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
Xét tgiac ABH và tgiac AHD có:
Góc HAB: góc chung
Góc AHB = Góc ADH (= 900)
=> tgiac ABH đồng dạng vs tgiac AHD
=> \(\frac{AB}{AH}=\frac{AH}{AD}\Rightarrow AH^2=AB.AD\)
Nối DE
Tứ giác DHEA có 3 góc vuông nên là HCN. Gọi F là giao điểm 2 đường chéo.
Vì DHEA là HCN nên DF = FA = FH = FE
=> tgiac DFA là tam giác cân tại F => Góc FDA = Góc FAD
Xét tgiac ADE và tgiac HAB có:
Góc FDA = Góc FAD (cmt)
Góc DAE = Góc AHB (= 900)
=> tgiac ADE đồng dạng vs tgiac HAB (1)
Xét tgiac HAB và tgiac ACB có:
Góc ABC : góc chung
Góc BHA = Góc BAC (= 900)
=> tgiac HAB đồng dạng vs tgiac ACB (2)
Từ (1) và (2) => tgiac ADE đồng dạng vs tgiac ACB
=> \(\frac{AD}{AC}=\frac{AE}{AB}\Rightarrow AD.AB=AE.AC\).
bài dễ mà