K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

A B C H D E F

Xét tgiac ABH và tgiac AHD có:

Góc HAB: góc chung

Góc AHB = Góc ADH (= 900)

=> tgiac ABH đồng dạng vs tgiac AHD

=> \(\frac{AB}{AH}=\frac{AH}{AD}\Rightarrow AH^2=AB.AD\)

Nối DE

Tứ giác DHEA có 3 góc vuông nên là HCN. Gọi F là giao điểm 2 đường chéo.

Vì DHEA là HCN nên DF = FA = FH = FE

=> tgiac DFA là tam giác cân tại F => Góc FDA = Góc FAD

Xét tgiac ADE và tgiac HAB có:

Góc FDA = Góc FAD (cmt)

Góc DAE = Góc AHB (= 900)

=> tgiac ADE đồng dạng vs tgiac HAB (1)

Xét tgiac HAB và tgiac ACB có:

Góc ABC : góc chung

Góc BHA = Góc BAC (= 900)

=> tgiac HAB đồng dạng vs tgiac ACB (2)

Từ (1) và (2) => tgiac ADE đồng dạng vs tgiac ACB

=> \(\frac{AD}{AC}=\frac{AE}{AB}\Rightarrow AD.AB=AE.AC\).

26 tháng 5 2016

bài dễ mà

2 tháng 2 2015

5,76 cm

3 tháng 2 2015

Hương dùng Py ta go đảo chứng minh tam giác vuông ở A nhé

Tam giác vuông HAC và tam giác vuông ABC đồng dạng vì có góc C chung suy ra AH/AB = AC/BC = HC/AC

thay số vào tính đc AH = 36/5 ; HC = 48/5

ta lại có HD.AC = AH.HC ( cùng bằng 2SAHC ).Suy ra HD = 144/25

a: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

nên AEHD là hình chữ nhật

Suy ra: EH//AD; EH=AD: EA//HD; EA=HD

b: Vì AEHD là hình chữ nhật

nên AH=DE

c: Ta có: AEHD là hình chữ nhật

mà O là giao của hai đường chéo

nên OA=OE=OD=OH

a: AH=căn 4*9=6(cm)

a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có

góc DAH chung

=>ΔADH đồg dạng vơi ΔAHB

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đường cao

nên AE*AC=AH^2

=>AE*AC=AD*AB

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: BH=CH=12/2=6cm

=>AC=căn AH^2+HC^2=10cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H