K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

nên AEHD là hình chữ nhật

Suy ra: EH//AD; EH=AD: EA//HD; EA=HD

b: Vì AEHD là hình chữ nhật

nên AH=DE

c: Ta có: AEHD là hình chữ nhật

mà O là giao của hai đường chéo

nên OA=OE=OD=OH

30 tháng 1 2022

đề bài có lỗi ko bạn ? 

a, Vì tam giác ABC cân tại A

AH là đường cao nên đồng thời là đường phân giác 

=> ^BAH = ^CAH 

b, Vì tam giác ABC cân tại A nên AH đồng thời là đường trung tuyến 

=> HB = HC = BC/2 = 4 cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{9+16}=5cm\)

c, Xét tam giác AEH và tam giác ADH ta có : 

^EAH = ^DAH (cmt) 

AH_chung 

^AEH = ^ADH = 900

Vậy tam giác AEH = tam giác ADH ( ch - gn ) 

=> AE = AD ( 2 cạnh tương ứng ) 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)vì AE = AD ; AB = AC 

=> ED // BC 

31 tháng 1 2022

mình cx k bt nx , tại thấy cô giao đề như thế nên mình cx chỉ bt lm theo thôi , và cảm ơn bn rất rất nhiều nha , mình đang bị bí ở bài này :3

a: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

b: Gọi K là giao của CM và AH

Xét ΔAKC có

AM,Ch là đường cao

AM cắt CH tại D

=>D là trực tâm

=>KD vuông góc AC

=>K,D,E thẳng hàng

=>AH,ED,CM đồng quy

14 tháng 9 2023

a: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

b: Gọi K là giao của CM và AH

Xét ΔAKC có

AM,Ch là đường cao

AM cắt CH tại D

=>D là trực tâm

=>KD vuông góc AC

=>K,D,E thẳng hàng

=>AH,ED,CM đồng quy

 

22 tháng 3 2021

undefined

5 tháng 2 2022

phạm duy ơi câu c là 2 cạnh góc vuông đúng ko 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

b: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=3^2+4^2=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

Do đó: ΔAEH=ΔADH

=>AE=AD

d: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

nên ED//BC

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

13 tháng 1 2020

Trả lời

a) Ta có:

AB = AE + EB

AC = AD + DC

Mà AB = AC (gt)

=> EB = DC

Xét ΔBDCΔBDC và ΔCEBΔCEB có:

EB = DC (cmt)

góc BDC = góc CEB = 900

BC là cạnh chung

Vậy: ΔBDCΔBDC = ΔCEBΔCEB (cạnh huyền - cạnh góc vuông)

b) Ta có: BC = BH + HC

=> BH = HC = BC2BC2 = 8282= 4 (cm)

Áp dụng định lí Py - ta - go vào ΔAHCΔAHC vuông tại H có:

AC2 = AH2 + HC2

AC2 = 32 + 42

AC2 = 9 + 16

AC2 = 25

AC = 25−−√25= 5 (cm)

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )