K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

A B C D F M H E

a) Đề sai nha bạn (Phải là cm E là trực tâm của \(\Delta\)BHD)

Xét \(\Delta\)BDC: M là trung điểm của BC, HC=HD => H là trung điểm của CD.

=> HM là đường trung bình của \(\Delta\)BDC => HM//BD.

Mà HM vuông góc với EF => BD cũng vuông góc với EF (Quan hệ song song vuông góc)

Xét \(\Delta\)BHD: BE vuông góc với DH; HE vuông góc với BD ( EF vuông góc BD cmt)

=> E là trực tâm của \(\Delta\)BHD (đpcm)

b) Nối D với E.

Ta có E là trực tâm \(\Delta\)BHD (cmt) => DE vuông góc BH

Mà AC vuông góc BH => DE//AC (Quan hệ song song vuông góc) hay DE//CF

=> ^EDH=^FCH (Cặp góc So le trong)

Xét \(\Delta\)DEH và \(\Delta\)CFH: 

^DHE=^CHF (Đối đỉnh)

HD=HC                                     \(\Rightarrow\)\(\Delta\)DEH=\(\Delta\)CFH  (g.c.g)

^EDH=^FCH

\(\Rightarrow\)HE=HF (2 cạnh tương ứng) => Đpcm.

2 tháng 4 2021

Gọi giao điểm HM với DC là P; giao điểm HN với BC là E 
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP 
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M 
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC 
Lại có HC vuông góc với AB (CH là đường cao) 
=> NM//AB 
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC 
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN) 
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK

Xét ΔDBC có CM/CB=CH/CD

nên HM//BD

=>BD vuông góc HE

Xét ΔHBD có

HE,BE là đường cao

HE cắt BE tại E

=>E là trực tâm

=>DE vuông góc BH

29 tháng 7 2023

giúp mình nhanh nhé mik sắp đi học r

 

11 tháng 9 2021

Gọi giao điểm HM với DC là P; giao điểm HN với BC là E 
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP 
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M 
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC 
Lại có HC vuông góc với AB (CH là đường cao) 
=> NM//AB 
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC 
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN) 
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK

11 tháng 9 2021

\(a,\left\{{}\begin{matrix}DH=HC\\BM=MC\end{matrix}\right.\Rightarrow HM\) là đường trung bình tam giác BDC

\(\Rightarrow HM//BD\Rightarrow BD\perp HE\left(HM\perp HE\right)\\ \Rightarrow HE.là.đường.cao.\Delta BDH\left(1\right)\)

Ta có H là trực tâm nên CH hay CD là đường cao tam giác ABC

\(\Rightarrow CD\perp BA\Rightarrow DH\perp BE\\ \Rightarrow BE.là.đường.cao.\Delta BDH\left(2\right)\)

Ta có \(BE\cap HE=E\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow E.là.trực.tâm.\Delta BDH\)

 

25 tháng 9 2021

a) Xét tam giác DBC có:

M là trung điểm BC (gt)

H là trung điểm DC(HD=HC)

=>MH là đường trung bình

=> MH//BD

b) Ta có: MH//BD(cmt)

Mà MH⊥EH

=> BD⊥EH

Xét tam giác DHB có:

EH là đường cao(BD⊥EH)

BA là đường cao( do CH⊥AB,D∈CH)

Mà EH cắt BA tại E

=> E là trực tâm tam giác DHB

c) Xét tam giác DHB có:

E là trực tâm

=> DE là đường cao => DE⊥BH

Mà AC⊥BH(BH là đường cao tam giác ABC)

=> DE//AC

d) Sửa đề: CM: HE=HF

Xét tam giác DEH và tam giác CFH có:

\(\widehat{EHD}=\widehat{CHF}\)(đối đỉnh)

DH=HC(gt)

\(\widehat{EDH}=\widehat{HCF}\)(2 góc so le trong do DE//AC)

=> ΔDEH=ΔCFH(g.c.g)

=> HE=HF