K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

A E C B H D

hình vẽ đâu rùi còn về phần giao điểm thì mk ko hiểu là cụ thể ở chỗ nào nên chưa giải đc câu c

giải tạm a và b nhé

14 tháng 3 2016

a) gọi giao của AB và DH là P; giao của AC và HE là M

xét 2 tam giác ADP và AHP có:

PD=PH(gt)

AB(chung)

APD=APH=90(độ)

suy ra tam giác ADP=AHP(c.g.c) suy ra AD=AH(1)

CM tương tự ta có: tam giác AKH =AKE(c.g.c) suy ra AH=AE(2)

từ (1)(2) suy ra : Ah=AE

AD=AH

suy ra AD=AE suy ra tam giác DAE cân tại A

a) Ta có: AB là đường trung trực của HD(gt)

⇔A nằm trên đường trung trực của HD

⇔AD=AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AC là đường trung trực của HE(gt)

⇔A nằm trên đường trung trực của HE

⇔AE=AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AE=AD(đpcm)

b) Xét ΔADH có AD=AH(cmt)

nên ΔADH cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADH cân tại A(cmt)

mà AB là đường trung trực ứng với cạnh đáy HD(gt)

nên AB là đường phân giác ứng với cạnh HD(Định lí tam giác cân)

⇔AB là tia phân giác của \(\widehat{DAH}\)

\(\widehat{DAH}=2\cdot\widehat{BAH}\)

Xét ΔAHE có AH=AE(cmt)

nên ΔAHE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAHE cân tại A(cmt)

mà AC là đường trung trực ứng với cạnh đáy HE(gt)

nên AC là đường phân giác ứng với cạnh HE(Định lí tam giác cân)

⇔AC là tia phân giác của \(\widehat{HAE}\)

\(\widehat{HAE}=2\cdot\widehat{CAH}\)

Ta có: \(\widehat{DAH}+\widehat{EAH}=\widehat{DAE}\)(tia AH nằm giữa hai tia AD,AE)

mà \(\widehat{DAH}=2\cdot\widehat{BAH}\)(cmt)

và \(\widehat{HAE}=2\cdot\widehat{CAH}\)(cmt)

nên \(2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{DAE}\)

\(\Leftrightarrow\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

mà \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)

nên \(\widehat{DAE}=2\cdot\widehat{BAC}\)(đpcm)

c) Ta có: AB là đường trung trực của HD(gt)

⇔AB vuông góc với HD tại trung điểm của HD

mà AB cắt HD tại I(gt)

nên AI⊥HD tại I và I là trung điểm của DH

Xét ΔADI vuông tại I và ΔAHI vuông tại I có

AD=AH(cmt)

AI chung

Do đó: ΔADI=ΔAHI(cạnh huyền-cạnh góc vuông)

29 tháng 7 2015

 a) HM là đường trung bình của ∆CBD nên HM//BD, mà HM ( HE nên HE ( BD hay HE là một đường cao của ∆BDH, ngoài ra BE là đường cao của ∆BDH nên E là trực tâm của tam giác BDH
b) Gọi BH cắt AC ở Q, DE cắt BH ở P. ∆CHQ = ∆DHP (cạnh huyền,góc nhọn) nên HQ = HP. ∆HQF = ∆HPE (g.c.g) nên HE = HF

( Hướng dẫn thoy )

30 tháng 10 2016

AD = AH (AB là đường trung trực của DH)

AH = AE (AC là đường trung trực của EH)

=> AD = AE

1 tháng 11 2016

còn phần b