Cho hình thang ABCD có góc BAD = góc CBD. Biết AB = 4cm; DC = 9cm.
a) Chứng minh tam giác ABD ~ tam giác BDC. Tính BD
b) Vẽ BE // AD cắt AC tại E. Chứng minh AB.AD = DC.BE
c) Vẽ À // BC cắt BD tại F. Chứng minh EF // DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/52703554140.html
Xem tại link này(Mik gửi cho)
Học tốt!!!!!!!!!!!!
Lời giải:
a)
Xét tam giác $BAD$ và $ADC$ có:
$\widehat{BAD}=\widehat{ADC}=90^0$
$\frac{AB}{AD}=\frac{4}{6}=\frac{6}{9}=\frac{AD}{DC}$
$\Rightarrow \triangle BAD\sim \triangle ADC$ (c.g.c)
b) Cho $O$ là giao $AC$ và $BD$
Từ tam giác đồng dạng p.a suy ra:
$\widehat{ABD}=\widehat{DAC}$
$\Leftrightarrow \widehat{ABO}=\widehat{DAO}=90^0-\widehat{BAO}$
$\Rightarrow \widehat{ABO}+\widehat{BAO}=90^0$
$\Rightarrow \widehat{AOB}=90^0$
$\Rightarrow AC\perp BD$ (đpcm)
c)
Theo định lý Talet:
$\frac{OA}{OC}=\frac{OB}{OD}=\frac{AB}{CD}=\frac{4}{9}$
$\Rightarrow OA=\frac{4}{9}OC; OB=\frac{4}{9}OD$
\(\frac{S_{AOB}}{S_{COD}}=\frac{OA.OB}{OC.OD}=\frac{\frac{4}{9}OC.\frac{4}{9}OD}{OC.OD}=\frac{16}{81}\)
a, Xét tam giác ABD và tam giác BDC ta có :
^BAD = ^CBD ( gt )
^ABD = ^BDC ( so le trong )
Vậy tam giác ABD ~ tam giác BDC ( g.g )
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\)( tỉ số đồng dạng ) \(\Rightarrow BD^2=AB.DC=4.9=36\)
\(\Rightarrow BD=\sqrt{36}=6\)cm
b, Gọi giao điểm AC và BD là I
Xét tam giác BIE và tam giác AID có : BE // AD
Theo hệ quả Ta lét ta có : \(\frac{BI}{ID}=\frac{IE}{IA}=\frac{BE}{AD}\)
Xét tam giác AIB và tam giác DIC có AB // CD ( ABCD là hình thang )
\(\frac{AI}{IC}=\frac{IB}{ID}=\frac{AB}{DC}\)
mà \(\frac{BE}{AC}=\frac{AB}{DC}=\frac{IB}{ID}\Rightarrow BE.DC=AB.AC\)