Cho tam giác ABC có góc A=60;BM,CM(M thuộc AC và N thuộc AB) lần lượt là tia phân giác của góc ABC và ACB;BM và CN cắt nhau tại I.
a; Tính góc BIN
b; CM:góc INM=góc IMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
mà EH là đường cao
nên H là trung điểm của BC
=>HB=HC
d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEI=góc HEC
=>ΔEAI=ΔEHC
=>EI=EC>EH
Ta có: <A+<B+<C=180
90+30+<C=180
<c=180-30-90=60
Xét ▲ABC và ▲MNP ta có:
<A=<M=90
<C=<P(=60)
Do đó ▲ABC đồng dạng ▲MNP(g-g)
\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)
\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)
a) từ I kẻ IK sao cho KIB=NIB(K thuộc BC)
xét tam giác INB và tam giác IKB có:
NBI=CBI(gt)
IB(chung)
NIB=IKB
suy ra tam giác INB=IKB(g.c.g)
suy ra NIB=BIC
CM tương tự ta có tam giác MIC=KIC(c.g.c)suy ra MIC=KIC
mà NIB=MIC suy ra NIB=BIK=KIC=180/3=60 độ
suy ra BIN=60 độ
a) từ I kẻ IK sao cho KIB=NIB(K thuộc BC)
xét tam giác INB và tam giác IKB có:
NBI=CBI(gt)
IB(chung)
NIB=IKB
suy ra tam giác INB=IKB(g.c.g)
suy ra NIB=BIC
CM tương tự ta có tam giác MCI=KCI(c.g.c)suy ra MIC=KIC
mà NIB=MIC suy ra BIN=BIK=CIK=180/3=60 độ
suy ra BIN=60 độ