K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có : ^BAK+^KAC=90 độ (1)

^HBA+^BAH ( hay ^BAK)=90 độ (2)

Từ (1) và (2)=> ^KAC=^HBA ( vì đều bằng 90 độ - ^BAK )

Xét 🔺BHA và 🔺AKC có :

^BHA = ^AKC = 90 độ

AB=AC ( vì 🔺ABC vuông cân ở A )

^KAC = ^HBA ( chứng minh trên )

Suy ra 🔺BHA = 🔺AKC ( cạnh huyền - góc nhọn )

=> BH = AK ( 2 góc tương ứng )

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.

15 tháng 2 2020

con 💖*•.¸♡ ₷ℴá¡↭ℳųộ¡↭2ƙ7 ♡¸.•*mày copy thôi chứ

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90° 
=> ^ABH = ^CAH 
Xét ▲ABH và ▲CAK có: 
^H = ^C (= 90°) 
AB = AC (T.g ABC vuông cân) 
^ABH = ^CAH (cmt) 
=> △ABH = △CAK (c.h-g.n) 
=> BH = AK 
b) Ta có BH//CK (Cùng ┴ AK) 
=>^HBM = ^MCK (SLT)(1) 
Mặt khác ^MAE + ^AEM = 90°(2) 
Và ^MCK + ^CEK = 90°(3) 
Nhưng ^AEM = ^CEK (đ đ)(4) 
Từ 2,3,4 => ^MAE = ^ECK (5) 
Từ 1,5 => ^HBM = ^MAE 
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC 
Xét ▲MBH và ▲MAK có: 
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma) 
=> △MBH = △MAK (c.g.c) 
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c) 
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ 
=> ^CMK + ^HMC = 90° hay ^HMK = 90° 
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân

22 tháng 8 2017

A B C M H K E

a) Xét tam giác AME và tam giác CKE: ^BHA=^AKC=900; ^AEM=^KEC (Đối đỉnh)

=> ^MAE=^KCE. Ta có: ^BAM=^ACM=450 => ^BAM+^MAE=^ACM+^KCE

=> ^BAH=^ACK => Tam giác BHA= Tam giác AKC (Cạnh huyền góc nhọn)

=> BH=AK (2 cạnh tương ứng)

b) ^ABM=^MAC=450. Mà ^ABH=^CAK => ^ABM-^ABH=^MAC-^CAK => ^MBH=^MAK

=> Tam giác MBH=Tam giác MAK (c.g.c)

c)  Tam giác MBH=Tam gics MAK (cmt) => ^BMH=^AMK (2 góc tương ứng)

=> ^AMB+^AMH=^KMH+^AMH => ^AMB=^KMH. Mà ^AMB=900.

=> ^KMH=900. Lại có MH=MK => Tam giác MHK vuông cân tại M.

24 tháng 8 2017

Tam giác AME sao bằng CKE đc bn?!

8 tháng 2 2020

Tgiac ABC vuông cân tại A => AB = AC

Xét tgiac ACK vuông tại K => góc ACK + KAC = 90 độ

Lại có KAC + BAH (BAK) = BAC = 90 độ

=> góc KCA = BAH

Xét tgiac BAH và ACK có:

+ AB = AC
+ góc AHB = AKC = 90 độ

+ góc KCA = BAH (cmt)

=> tgiac BAH = ACK (ch-gn)

=> BH = AK (đpcm)