Tìm Min(Max) nếu có thể
E=-x^2+2*x-1;
C=(x^2-1)*(3*x-10)*(3*x-16)
mik đag cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có (x+2)2≥0(x+2)2≥0
⇒(x+2)2+5≥5⇒(x+2)2+5≥5
⇒30(x+2)2+5≤305=6⇒30(x+2)2+5≤305=6
Hay A≤6A≤6
Dấu = xảy ra ⇔(x+2)2=0⇔x+2=0⇔x=−2⇔(x+2)2=0⇔x+2=0⇔x=−2
b,
Ta có (x−3)2≥0(x−3)2≥0
⇒(x−3)2+4≥4⇒(x−3)2+4≥4
⇒20(x+2)2+5≤204=5⇒20(x+2)2+5≤204=5
Hay A≤5A≤5
Dấu = xảy ra ⇔(x−3)2=0⇔x−3=0⇔x=3⇔(x−3)2=0⇔x−3=0⇔x=3
c,
Ta có (x+1)2≥0(x+1)2≥0
⇒(x+1)2+2≥2⇒(x+1)2+2≥2
⇒10(x+1)2+2≤102=5⇒10(x+1)2+2≤102=5
Hay A≤5A≤5
Dấu = xảy ra ⇔(x+1)2=0⇔x+1=0⇔x=−1⇔(x+1)2=0⇔x+1=0⇔x=−1
A = | 5x + 2 | + 5| x + 1 |
= | 5x + 2 | + | 5x + 5 |
= | 5x + 2 | + | -( 5x + 5 ) |
= | 5x + 2 | + | -5x - 5 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
A = | 5x + 2 | + | -5x - 5 | ≥ | 5x + 2 - 5x - 5 | = | -3 | = 3
Dấu "=" xảy ra khi ab ≥ 0
=> ( 5x + 2 )( -5x - 5 ) ≥ 0
1. \(\hept{\begin{cases}5x+2\ge0\\-5x-5\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}5x\ge-2\\-5x\ge5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{2}{5}\\x\le-1\end{cases}}\)( loại )
2. \(\hept{\begin{cases}5x+2\le0\\-5x-5\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}5x\le-2\\-5x\le5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{2}{5}\\x\ge-1\end{cases}}\Leftrightarrow-1\le x\le-\frac{2}{5}\)
=> MinA = 3 <=> \(-1\le x\le-\frac{2}{5}\)
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
\(H=\dfrac{x^2-6x+1}{x^2+1}=\dfrac{4x^2+4-3x^2-6x-3}{x^2+1}\)
\(=\dfrac{4\left(x^2+1\right)-3\left(x^2+2x+1\right)}{x^2+1}=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\)
Ta có: \(\dfrac{3\left(x+1\right)^2}{x^2+1}\ge0\forall x\Rightarrow H=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\le4\forall x\)
\(\Rightarrow H_{max}=4\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Dễ thấy x càng lớn thì A càng lớn
vậy ko có Max
Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)
\(=a^2-6a+6a-36+2020\)
\(=a^2+1984\ge1984\left(a^2\ge0\right)\)
Vậy Min A = 1984
Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Lời giải:
$G=\frac{x^2+x+2}{2x^2-2x+3}$
$\Rightarrow G(2x^2-2x+3)=x^2+x+2$
$\Leftrightarrow x^2(2G-1)-x(2G+1)+(3G-2)=0(*)$
Vì $G$ tồn tại nên dấu "=" tồn tại, điều này có nghĩa là $(*)$ luôn có nghiệm.
$\Rightarrow \Delta=(2G+1)^2-4(2G-1)(3G-2)\geq 0$
$\Leftrightarrow -20G^2+32G-7\geq 0$
$\Leftrightarrow 20G^2-32G+7\leq 0$
$\Leftrightarrow \frac{16+\sqrt{116}}{20}\geq G\geq \frac{16-\sqrt{116}}{20}$
Vậy....
a) MIN : \(y=\frac{\frac{1}{3}x^2+\frac{1}{3}x+\frac{1}{3}+\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}=\frac{\frac{1}{3}\left(x^2+x+1\right)+\frac{2}{3}\left(x^2-2x+1\right)}{x^2+x+1}\)
\(=\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\)
MAX : \(y=\frac{3x^2+3x+3-2x^2-4x-2}{x^2+x+1}=\frac{3\left(x^2+x+1\right)-2\left(x^2+2x+1\right)}{x^2+x+1}\)
\(=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\)
b ) tương tự
E = - \(x^2\) + 2\(x\) - 1
E = - (\(x^2\) - 2\(x\) + 1)
E = - (\(x\) - 1)2
(\(x\) - 1) ≥ 0 ⇒ - (\(x\) - 1)2 ≤ 0
Emax = 0 ⇔ \(x\) = 1
Để tìm các điểm tới hạn của hàm E, chúng ta cần tìm các giá trị của x tại đó đạo hàm của E bằng 0.
Lấy đạo hàm của E theo x, ta được:
E' = -2x + 2
Đặt E' bằng 0 và tìm x:
-2x + 2 = 0
-2x = -2
x = 1
Vậy điểm tới hạn của E là x=1.
Để tìm các điểm tới hạn của hàm C, chúng ta cần tìm các giá trị của x tại đó đạo hàm của C bằng 0.
Lấy đạo hàm của C theo x, ta được:
C' = (2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16)
Đặt C' bằng 0 và giải tìm x:
(2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16) = 0
Phương trình này khá phức tạp và không có nghiệm đơn giản. Nó sẽ yêu cầu thao tác đại số hơn nữa hoặc các phương pháp số để tìm các điểm tới hạn của C.