K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2024

\(H=\dfrac{x^2-6x+1}{x^2+1}=\dfrac{4x^2+4-3x^2-6x-3}{x^2+1}\)

\(=\dfrac{4\left(x^2+1\right)-3\left(x^2+2x+1\right)}{x^2+1}=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\)

Ta có: \(\dfrac{3\left(x+1\right)^2}{x^2+1}\ge0\forall x\Rightarrow H=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\le4\forall x\)

\(\Rightarrow H_{max}=4\Leftrightarrow x+1=0\Leftrightarrow x=-1\)  

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

25 tháng 12 2018

\(A=\dfrac{x^2-x+1}{x^2+x+1}\)

\(\Leftrightarrow Ax^2+Ax+A-x^2+x-1=0\)

\(\Leftrightarrow x^2\left(A-1\right)+x\left(A+1\right)+\left(A-1\right)=0\)

\(\Delta=\left(A+1\right)^2-4\left(A-1\right)^2\ge0\)

\(\Leftrightarrow\left(A+1\right)^2-\left(2A-2\right)^2\ge0\)

\(\Leftrightarrow\left(A+1+2A-2\right)\left(A+1-2A+2\right)\ge0\)

\(\Leftrightarrow\left(3A-1\right)\left(3-A\right)\ge0\)

\(\Leftrightarrow\dfrac{1}{3}\le A\le3\)

25 tháng 12 2018

Ý tưởng thì đúng đó, mỗi tội chưa xét A = 1

20 tháng 7 2017

+Ta có:\(3P=\dfrac{3x^2+3}{x^2-x+1}=\dfrac{2x^2-2x+2+x^2+2x+1}{x^2-x+1}\)

\(=\dfrac{2\left(x^2-x+1\right)}{x^2-x+1}+\dfrac{\left(x+1\right)^2}{x^2-x+1}\\ =\dfrac{2}{3}+\dfrac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}\ge\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(x=-1\)

Vậy Min \(P=\dfrac{2}{3}\) tại \(x=-1\)

+Ta có: \(P=\dfrac{x^2+1}{x^2-x+1}=\dfrac{x^2+1-2x^2+2x-2+2x^2-2x+2}{x^2-x+1}\)

\(=2-\dfrac{\left(x-1\right)^2}{x^2-x+1}\le2\)

Dấu "=" xảy ra khi x = 1

Vậy Max P = 2 tại x = 1

thông minh nhờ