Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
\(A=\dfrac{x^2-x+1}{x^2+x+1}\)
\(\Leftrightarrow Ax^2+Ax+A-x^2+x-1=0\)
\(\Leftrightarrow x^2\left(A-1\right)+x\left(A+1\right)+\left(A-1\right)=0\)
\(\Delta=\left(A+1\right)^2-4\left(A-1\right)^2\ge0\)
\(\Leftrightarrow\left(A+1\right)^2-\left(2A-2\right)^2\ge0\)
\(\Leftrightarrow\left(A+1+2A-2\right)\left(A+1-2A+2\right)\ge0\)
\(\Leftrightarrow\left(3A-1\right)\left(3-A\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{3}\le A\le3\)
+Ta có:\(3P=\dfrac{3x^2+3}{x^2-x+1}=\dfrac{2x^2-2x+2+x^2+2x+1}{x^2-x+1}\)
\(=\dfrac{2\left(x^2-x+1\right)}{x^2-x+1}+\dfrac{\left(x+1\right)^2}{x^2-x+1}\\ =\dfrac{2}{3}+\dfrac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}\ge\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy Min \(P=\dfrac{2}{3}\) tại \(x=-1\)
+Ta có: \(P=\dfrac{x^2+1}{x^2-x+1}=\dfrac{x^2+1-2x^2+2x-2+2x^2-2x+2}{x^2-x+1}\)
\(=2-\dfrac{\left(x-1\right)^2}{x^2-x+1}\le2\)
Dấu "=" xảy ra khi x = 1
Vậy Max P = 2 tại x = 1
\(H=\dfrac{x^2-6x+1}{x^2+1}=\dfrac{4x^2+4-3x^2-6x-3}{x^2+1}\)
\(=\dfrac{4\left(x^2+1\right)-3\left(x^2+2x+1\right)}{x^2+1}=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\)
Ta có: \(\dfrac{3\left(x+1\right)^2}{x^2+1}\ge0\forall x\Rightarrow H=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\le4\forall x\)
\(\Rightarrow H_{max}=4\Leftrightarrow x+1=0\Leftrightarrow x=-1\)