Cho tam giác ABC vuông tại A có AB= 9 cm; BC - AC = 3 cm. Tính BC, AC.
1 tick cho ai trả lời đúng và nhanh nhất nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=12cm\)
Vì BD là pg \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{12}{24}=\dfrac{1}{2}\Rightarrow DC=\dfrac{15}{2}cm;DA=\dfrac{9}{2}cm\)
Gọi M là trung điểm của BC
Ta tính được AG = 2 3 AM = 10cm
Gọi N là trung điểm của AB => MN//AC, MN ⊥ AB
D,I,G thẳng hàng
<=> A G A M = A D A N = 2 3 <=> A D 2 A N = 1 3 <=> A D A B = 1 3
Ta có AD = r nội tiếp = A B + A C - B C 2 <=> A B 3 = A B + A C - B C 2
<=> AB+3AC = 3BC = A B 2 + A C 2
<=> 3AC = 4AB (đpcm)
Áp dụng kết quả trên ta có: AD = A B + A C - B C 2 = 3cm
=> ID = DA = 3cm => IG = DG – ID = 1cm
vì BH=9 , HC=16
=> BC=25
xét tam giác ABC ...., ta có
BC^2=CA^2+AB^2
hay 25^2=20^2 +Ab^2
625=400 + AB^2
AB^2=225
AB=15
xét tam giác ABH...., ta có
AB^2=AH^2 + BH^2
hay 15^2= Ah^2 + 9^2
225= AH^2 +81
AH^2= 144
AH=12
thêm kl và những chỗ còn thiếu vào nhé
Ta có: \(BC=BH+CH=9+16=25\)
Áp dụng định lý Py- ta - go vào \(\Delta ABC\), ta được:
\(AB^2=BC^2-AC^2\)
\(\Leftrightarrow AB^2=25^2-20^2\)
\(\Leftrightarrow AB^2=625-400\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=\sqrt{225}=15\)
Áp dụng định lý Py- ta - go vào \(\Delta AHC\), ta được:
\(AH^2=AC^2-CH^2\)
\(\Leftrightarrow AH^2=20^2-16^2\)
\(\Leftrightarrow AH^2=400-256\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}=12\)
Bài làm
BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)
Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202
=625−400=225=152=625−400=225=152
Vậy AB=15cm
Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122
Vậy AH= 12cm
# Học tốt #
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
Theo giả thiết : BC - AC = 3 => AC = BC -3
THeo định lý Pytago : BC2 = AB2 + (BC-3)2
BC2 = AB2 + BC2 - 6BC + 9
0 = AB2 - 6BC + 9 => 6BC = AB2 + 9
6BC = 92 + 9 = 90 => BC = 15 (cm)
Ta có : AC = 15 - 3 = 12 (cm)