K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2021

đây nha

22 tháng 10 2021

20 tháng 12 2024

meo

 

 

 

 

17 tháng 3 2020

Lấy X, Y lần lượt đối xứng A qua H và M.
Dễ thấy ΔΔAMB cân( đường cao đồng thời là phân giác)
suy ra ABXM là hình thoi
ta có M vừa là trung điểm BC vừa là trung điểm AY
=> ABYC là hình bình hành
suy ra CY=AB=XM và XMBˆ=ABCˆXMB^=ABC^ = MCYˆMCY^
=> CY∖∖XMCY∖∖XM
=>XYCM là hình bình hành=> MC=XY
mà ta còn có AC=BY ( hbh)
BX=AM ( hình thoi)
=> ΔAMC=ΔBXYΔAMC=ΔBXY
=> XBYˆ=MACˆ=XAYˆXBY^=MAC^=XAY^
mà AY∖∖BXAY∖∖BX
=>AXBY là hình thang cân
=>AB=XY=MC=MB=AM
=> tam giác AMB đều
=>BAMˆ=Bˆ=60oBAM^=B^=60o=>Aˆ=90o,C=30oˆ

ΔAHD vuông tại H

nên AH<AD

Vì góc ADH<90 độ

=>góc ADM>90 độ

=>AD<AM

=>AH<AD<AM

=>AD nằm giữa AH và AM

7 tháng 1 2024

Xét tam giác ACD và tam giác MBD có:

      AD = DM (gt)

      BD = DC (gt)

   \(\widehat{BDM}\) = \(\widehat{ADC}\) (hai góc đối đỉnh)

⇒ \(\Delta\)ACD = \(\Delta\) MBD  (c-g-c)

Xét tứ giác ABMC có

     AD = DM

      BD = DC

⇒ tứ giác ABMC  là hình bình hành vì tứ giác có hai đường chéo căt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành.

⇒ AC // BM

⇒ \(\widehat{ABM}\) = \(\widehat{MCA}\) (vì tứ giác ABMC là hình bình hành)

 

 

 

   

 

7 tháng 1 2024

 loading...

 xét tam giác ACD và tam giác MBD có 

AD=DM [ gt ]

BD=DC[ gt ]

BDM = ADC hai góc đối đỉnh

suy ra tam giác ACD= tam giác MBD [ c-g-c]

xét tứ giác ABMC có

AD = DM

BD=DC

suy ra tứ giác ABMC là hình bình hành vì tứ giác  có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành

suy ra ABM=MCA vì tứ giác ABMC là hình bình hành .

3 tháng 1 2017

Bạn vẽ hình ra nhé! 
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau) 
Xét tam giác vuông ADM và tam giác vuông BAH có: 
AD = AB (gt) 
góc DAM = góc ABH (cmt) 
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn) 
=> DM = AH 
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH 
=> DM = EN (cùng bằng AH) 
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE. 
Chúc bạn học giỏi!

tk nha bạn

thank you bạn

(^_^)

2 tháng 1 2018

Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau) 
Xét tam giác vuông ADM và tam giác vuông BAH có: 
AD = AB (gt) 
góc DAM = góc ABH (cmt) 
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn) 
=> DM = AH 
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH 
=> DM = EN (cùng bằng AH) 
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.