Cho (o) 2 dây AB, AC vuông góc với nhau. Biết AB=10cm; AC=24
a) Tính khoảng cách từ mỗi dây đến tâm
b) Chứng minh 3 điểm O,B,C thẳng hàng
c) TÍnh đường kính của (o)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi giao điểm của OC với AB là H
Vì OC\(\perp\)AB nên OH\(\perp\)AB tại H
=>OH là khoảng cách từ O xuống dây AB
Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2=8(cm)
ΔOHA vuông tại H
=>\(OH^2+HA^2=OA^2\)
=>\(OH^2=10^2-8^2=36\)
=>\(OH=\sqrt{36}=6\left(cm\right)\)
Câu 2:
a: Xét (O) có
AB là đường kính
BC là dây
Do đó: AB>BC
b: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
c: Xét ΔACB có
O là trung điểm của AB
OM//CB
Do đó: M là trung điểm của AC
AC = BD (gt)
=> sđ cung AC = sđ cung BD (Trong đường tròn các cung có độ dài dây trương cung bằng nhau thì có số đo bằng nhau )
Ta có
sđ cung ACD = sđ cung AC + sđ cung CD
sđ cung CDB = sđ cung BD + sđ cung CD
=> sđ cung ACD = sđ cung CDB
\(\Rightarrow sđ\widehat{EAB}=sđ\widehat{EBA}\) (2 góc nội tiếp đường tròng chắn 2 cung CDB và cung ACD có số đo bằng nhau)
\(\Rightarrow\Delta EAB\) cân tại E
Ta có
OA = OB (bán kính (O))
=> OE là trung tuyến của tg EAB
=> \(OE\perp AB\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
Ta có \(OA=OC=\dfrac{1}{2}AB=5\left(cm\right)\) (OC là bán kính)
Theo t/c đường kính cắt dây cung thì H là trung điểm CD
Do đó \(CH=HD=\dfrac{1}{2}CD=3\left(cm\right)\)
Pytago: \(OH=\sqrt{OC^2-HC^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Do đó \(HA=OA-OH=5-4=1\left(cm\right)\)
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)