K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

Câu 1:

Gọi giao điểm của OC với AB là H

Vì OC\(\perp\)AB nên OH\(\perp\)AB tại H

=>OH là khoảng cách từ O xuống dây AB

Ta có: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>HA=HB=AB/2=8(cm)

ΔOHA vuông tại H

=>\(OH^2+HA^2=OA^2\)

=>\(OH^2=10^2-8^2=36\)

=>\(OH=\sqrt{36}=6\left(cm\right)\)

Câu 2:

a: Xét (O) có

AB là đường kính

BC là dây

Do đó: AB>BC

b: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

c: Xét ΔACB có

O là trung điểm của AB

OM//CB

Do đó: M là trung điểm của AC

22 tháng 12 2021

AB=16cm

29 tháng 7 2023

A B O D C D

AC = BD (gt)

=> sđ cung AC = sđ cung BD (Trong đường tròn các cung có độ dài dây trương cung bằng nhau thì có số đo bằng nhau )

Ta có

sđ cung ACD = sđ cung AC + sđ cung CD

sđ cung CDB = sđ cung BD + sđ cung CD

=> sđ cung ACD = sđ cung CDB

\(\Rightarrow sđ\widehat{EAB}=sđ\widehat{EBA}\) (2 góc nội tiếp đường tròng chắn 2 cung CDB và cung ACD có số đo bằng nhau)

\(\Rightarrow\Delta EAB\) cân tại E

Ta có

OA = OB (bán kính (O))

=> OE là trung tuyến của tg EAB

=> \(OE\perp AB\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)

 

29 tháng 7 2023

Vì 2 dây AC và BD bằng nhau ⇒ cách đều tâm O ⇒ OC = OD

△AOC = △BOD (c.c.c) ⇒ góc A = B 

⇒ △ABE cân tại E mà EO là trung tuyến ứng với AB

⇒ EO vuông góc với AB tại O

10 tháng 12 2021

Ta có \(OA=OC=\dfrac{1}{2}AB=5\left(cm\right)\) (OC là bán kính)

Theo t/c đường kính cắt dây cung thì H là trung điểm CD

Do đó \(CH=HD=\dfrac{1}{2}CD=3\left(cm\right)\)

Pytago: \(OH=\sqrt{OC^2-HC^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Do đó \(HA=OA-OH=5-4=1\left(cm\right)\)

30 tháng 5 2017

DD
6 tháng 7 2021

Xét tam giác \(ABD\)vuông tại \(A\):

\(BD^2=AB^2+AD^2\)(định lí Pythagore) 

\(=4^2+10^2=116\)

\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)

Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)

Suy ra \(ABDE\)là hình bình hành. 

\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):

\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)

\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)

\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)

Hạ \(BH\perp CD\).

\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)

\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)

17 tháng 7 2018