K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

A B C I 12cm

Câu a : Theo tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{AB}{2}=\dfrac{AC}{3}=\dfrac{\sqrt{AB^2+AC^2}}{\sqrt{2^2+3^2}}=\dfrac{BC}{\sqrt{13}}=\dfrac{12}{\sqrt{13}}\)

\(\left\{{}\begin{matrix}\dfrac{AB}{2}=\dfrac{12}{\sqrt{13}}\Rightarrow AB=\dfrac{24}{\sqrt{13}}cm\\\dfrac{AC}{3}=\dfrac{12}{\sqrt{13}}\Rightarrow AC=\dfrac{36}{\sqrt{13}}cm\end{matrix}\right.\)

Câu b : Theo hệ thức lượng cho tam giác ABC ta có :

\(AI.BC=AB.AC\Rightarrow AI=\dfrac{AB.AC}{BC}=\dfrac{\dfrac{24}{\sqrt{13}}.\dfrac{36}{\sqrt{13}}}{12}=\dfrac{72}{13}cm\)

\(AB^2=AI.BC\Rightarrow AI=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{24}{\sqrt{13}}\right)^2}{12}=\dfrac{48}{13}cm\)

31 tháng 8 2018

Mình nhầm dòng cuối AI sửa thành BI nha !

1 tháng 10 2023

Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)

\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)

\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>AB^2=15^2-12^2=81

=>AB=9cm

Xét ΔABC vuông tại A có sin C=AB/BC=9/15=3/5

nên góc C=37 độ

=>góc B=53 độ

16 tháng 9 2023

Xét tam giác ABC vuông tại A áp dụng Py-ta-go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}\)

\(\Leftrightarrow AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

Xét tam giác ABC vuông tại A ta có: 

\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)

\(\Rightarrow\widehat{C}\approx37^o\)

Mà: \(\widehat{C}+\widehat{B}=90^o\)

\(\Leftrightarrow\widehat{B}=90^o-37^o=53^o\)

15 tháng 11 2023

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}+30^0=90^0\)

=>\(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{AB}{12}=sin30=\dfrac{1}{2}\)

=>AB=6(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=144-36=108\)

=>\(AC=6\sqrt{3}\left(cm\right)\)

15 tháng 11 2023

ABC vuông tại A

⇒ ∠B + ∠C = 90⁰

⇒ ∠B = 90⁰ - ∠C

= 90⁰ - 30⁰

= 60⁰

sinB = AC/BC

⇒ AC = BC . sinB

= 12 . sin60⁰

= 6√3 (cm)

sinC = AB/BC

⇒ AB = BC.sinC

= 12.sin30⁰

= 6 (cm)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)

2 tháng 1 2022

bổ sung
A. 108cm2 B. 54cm C. 54cm2 D. 15cm2

5 tháng 1 2022

Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)

Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)

8 tháng 2 2021

A B C 16 12 H

1) Có \(\Delta ABC\) vuông 

=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)

2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  S\(\Delta ABC\)  =  S\(\Delta ABH\)  +  S\(\Delta ACH\)

=>  \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)

=>  \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)

=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)

=> \(\dfrac{AH.BC}{2}\)               =  96

=> AH                         =  96 .  \(\dfrac{2}{BC}\) = 96 .  \(\dfrac{2}{20}\) = 9.6 (cm)

3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay \(BC=\sqrt{193}\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)

\(\Leftrightarrow\widehat{B}\simeq60^0\)

\(\Leftrightarrow\widehat{C}=30^0\)

26 tháng 2 2022

AC = 12 cm bạn nhé 

Theo định lí Pytago tam giác ABC vuông tại A 

\(BC=\sqrt{AC^2+AB^2}=15cm\)

26 tháng 2 2022

Cảm ơn bạn nha

17 tháng 2 2016

a) xét tg ABD vuông tại A và tg EBD vuông tại E có:

               BD là cạnh chung

    góc ABD = góc DBE ( do BD là đường pg của góc B )

=> tg ABD = tg EBD ( cạnh huyền - góc nhọn )

        b) Tam giác ABC vuông tại A có:

             BC2 = AC2 + AB( định lý Pytago )

         = 122  +  92

         = 144  +  81

         =    225

    =>BC =  \(\sqrt{225}=15\)

      Vậy BC =  15 cm

              ai có câu trả lời giống mình thì h cho mình nhé !!!!!!!!!!!