K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

Có :

\(IB=IC=BC\)

\(3IB=2IC\)

\(\Rightarrow\frac{IB}{2}=\frac{IC}{3}\)

Đặt \(\frac{IB}{2}=\frac{IC}{3}=k\Rightarrow IC=3k\)

\(IB=2k\)

\(BC=3k+2k=5k\)

\(\Rightarrow\frac{BC}{IC}=\frac{5k}{3k}=\frac{5}{3}\)

27 tháng 7 2016

\(\frac{5}{2}\)

14 tháng 5 2021

a) AB < AC < BC ⇒ góc ACB < góc ABC < góc BAC (quan hệ giữa góc và cạnh đối diện)

Sửa đề: AI vuông góc với BC

a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có 

AB=AC(ΔABC cân tại A)

AI chung

Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)

Suy ra: IB=IC(hai cạnh tương ứng)

mà B,I,C thẳng hàng(gt)

nên I là trung điểm của BC(đpcm)

b) Ta có: ΔAIB=ΔAIC(cmt)

nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

hay \(\widehat{EAI}=\widehat{FAI}\)

Xét ΔEAI và ΔFAI có 

AE=AF(gt)

\(\widehat{EAI}=\widehat{FAI}\)(cmt)

AI chung

Do đó: ΔEAI=ΔFAI(c-g-c)

Suy ra: IE=IF(hai cạnh tương ứng)

Xét ΔIEF có IE=IF(cmt)

nên ΔIEF cân tại I(Định nghĩa tam giác cân)

c) Ta có: AE+EB=AB(E nằm giữa A và B)

AF+FC=AC(F nằm giữa A và C)

mà AE=AF(gt)

và AB=AC(ΔABC cân tại A)

nên EB=FC

Xét ΔEBI và ΔFCI có 

EB=FC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

BI=CI(cmt)

Do đó: ΔEBI=ΔFCI(c-g-c)

12 tháng 12 2021

Xét ΔABC có 

AI là đường cao

AI là đường trung tuyến

Do đó: ΔABC cân tại A

24 tháng 1 2020

A B C I D

Trong \(\Delta AIK\)và \(\Delta ABC\)có \(IK//BC\)

\(\Rightarrow\Delta AIK~\Delta ABC\)

Tương tự ta có: \(\Delta BID~\Delta BAC\)

Có: \(\Delta AIK~\Delta ABC\Rightarrow\frac{AK}{AC}=\frac{AI}{AB}\)

\(\Rightarrow\frac{AC-AK}{AC}=\frac{AB-AI}{AB}\Rightarrow\frac{CK}{CA}=\frac{IB}{AB}\left(1\right)\)

Và: \(\Delta BID~\Delta BAC\)

\(\Rightarrow\frac{BD}{BC}=\frac{BI}{BA}\Rightarrow\frac{BC-BD}{BC}=\frac{BA-BI}{BA}\Rightarrow\frac{CD}{CB}=\frac{IA}{AB}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{CK}{CA}+\frac{CD}{CB}=\frac{IA+IB}{AB}=\frac{AB}{AB}=1\left(đpcm\right)\)

9 tháng 5 2017

Chứng minh câu a

Xét tam giác ABI và tam giác ACI có:

AI cạnh chung

AB = AC ( tam giác ABC cân tại A )

Suy ra tam giác ABI = tam giác ACI ( c-g-c )

Suy ra BI = CI

25 tháng 3 2020

b, xét tam giác AFI và tam giác AEI có : AI chung

FA = AE (gt)

^FAI = ^EAI do tam giác CAI = tam giác BAI (câu a)

=> tam giác AFI = tam giác AEI (c-g-c)

=> FI = EI 

=> tam giác EFI cân tại I

6 tháng 3 2016

Anh không vẽ lại hình nha.

a,

Vì tam giác ABC cân tại A

Mặt khác AI là đường cao của BC

=>AI cũng là đường trung tuyến của BC

=>I là trung điểm của BC

=>IB=IC

b,Xét tam giác EIB và tam giác FIC có:

IB=IC(CMT)

góc B=góc C(ABC cân tại A)

EB=FC(vi AE=AF)

c,

Ta có:

EF=AF

AB=AC(ABC cân tại A)

=>AE/EB=AF/AC

=>EF//BC(định lý talet)

Tích anh nha Giang

6 tháng 3 2016

sai đề rồi