Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh câu a
Xét tam giác ABI và tam giác ACI có:
AI cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác ABI = tam giác ACI ( c-g-c )
Suy ra BI = CI
Sửa đề: AI vuông góc với BC
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
mà B,I,C thẳng hàng(gt)
nên I là trung điểm của BC(đpcm)
b) Ta có: ΔAIB=ΔAIC(cmt)
nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
hay \(\widehat{EAI}=\widehat{FAI}\)
Xét ΔEAI và ΔFAI có
AE=AF(gt)
\(\widehat{EAI}=\widehat{FAI}\)(cmt)
AI chung
Do đó: ΔEAI=ΔFAI(c-g-c)
Suy ra: IE=IF(hai cạnh tương ứng)
Xét ΔIEF có IE=IF(cmt)
nên ΔIEF cân tại I(Định nghĩa tam giác cân)
c) Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà AE=AF(gt)
và AB=AC(ΔABC cân tại A)
nên EB=FC
Xét ΔEBI và ΔFCI có
EB=FC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
BI=CI(cmt)
Do đó: ΔEBI=ΔFCI(c-g-c)
Xét \(\Delta ABC\) cân tại A:
AI là đường cao (AI vuông góc BC, I thuộc BC).
\(\Rightarrow\) AI là đường trung tuyến (T/c \(\Delta\) cân).
\(\Rightarrow\) I là trung điểm BC.
Vì \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow AB=AC;\widehat{B}=\widehat{C}\) (T/c \(\Delta\) cân).
Ta có: \(EB=AB-AE;FC=AC-AF.\)
Mà \(\left\{{}\begin{matrix}AE=AF\left(gt\right).\\AB=AC\left(cmt\right).\end{matrix}\right.\)
\(\Rightarrow EB=FC.\)
Xét \(\Delta EBI\) và \(\Delta FCI:\)
\(EB=FC\left(cmt\right).\\ \widehat{B}=\widehat{C}\left(cmt\right).\)
\(IB=IC\) (I là trung điểm BC).
\(\Rightarrow\Delta EBI\) \(=\Delta FCI\left(c-g-c\right).\)
\(\Rightarrow IE=IF\) (2 cạnh tương ứng).
\(\Rightarrow\Delta IEF\) cân tại I.
a.
Ta có: I là đường cao cũng là đường trung tuyến trong tam giác cân ABC
=> I là trung điểm BC
b.
Xét tam giác AEI và tam giác AFI, có:
AE = AF ( gt )
góc EAI = góc FAI ( AI là đường cao cũng là đường phân giác )
AI: cạnh chung
Vậy tam giác AEI = tam giác AFI ( c.g.c )
=> IE = IF ( 2 cạnh tương ứng )
=> Tam giác IEF cân tại I
c.
Ta có: AB = AC ( ABC cân )
Mà AE = AF ( gt )
=> BE = CF
Xét tam giác BEI và tam giác CFI, có:
BE = CF ( cmt )
góc B = góc C ( ABC cân )
IB = IC ( gt )
Vậy tam giác BEI = tam giác CFI ( c.g.c )
a) Xét hai tam giác vuông IBA và ICA có:
IA cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác IBA = tam giác ICA ( ch-cgv )
Suy ra IB = IC ( đpcm )
c) AE + EB = AB
À + FC = AC
Mà EB = FC ( gt )
AB = AC ( tam giác ABC cân tại A )
Suy ra AE = À
Suy ra tam giác AEF cân tại A
Suy ra góc AEF = 180 độ - góc BAC / 2
góc ABC = 180 độ - góc BAC / 2 ( tam giác ABC cân tại A )
Suy ra góc AEF = góc ABC và hai góc này ở vị trí đồng vị
Suy ra EF song song BC
câu b để từ từ tui nghĩ
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Giải
Bạn tự vẽ hình
\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\)
=> Tamgiac AIC = tamgiac AIB
=> IB = IC (dn)
b, Dùng PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E
=> Goc AFE = (180 - goc BAC) : 2
Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2
=> Goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC
Vậy ... ( đpcm )
Anh không vẽ lại hình nha.
a,
Vì tam giác ABC cân tại A
Mặt khác AI là đường cao của BC
=>AI cũng là đường trung tuyến của BC
=>I là trung điểm của BC
=>IB=IC
b,Xét tam giác EIB và tam giác FIC có:
IB=IC(CMT)
góc B=góc C(ABC cân tại A)
EB=FC(vi AE=AF)
c,
Ta có:
EF=AF
AB=AC(ABC cân tại A)
=>AE/EB=AF/AC
=>EF//BC(định lý talet)
Tích anh nha Giang
sai đề rồi