Có bao nhiêu giá trị nguyên m ∈ - 3 ; 3 sao cho đồ thị hàm số y = x + 1 m x 2 + 1 có hai tiệm cận ngang?
A. 2
B. 0
C. 1
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m+3\sqrt[3]{m+3cosx}=cos^3x\)
Đặt \(\sqrt[3]{m+3cosx}=t\Rightarrow m=t^3-3cosx\)
\(\Rightarrow t^3-3cosx+3t=cos^3x\)
\(\Leftrightarrow t^3+3t=cos^3x+3cosx\)
Hàm \(f\left(t\right)=t^3+3t\) có \(f'\left(t\right)=3t^2+3>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow t=cosx\) (hoặc là bạn liên hợp cũng được, tùy thích)
\(\Leftrightarrow m=t^3-3cosx=cos^3x-3cosx\)
Đặt \(cosx=u\in\left[-1;1\right]\Rightarrow f\left(u\right)=u^3-3u=m\)
Xét hàm \(f\left(u\right)=u^3-3u\) trên \(\left[-1;1\right]\)
\(f'\left(u\right)=3u^2-3\Rightarrow u=\pm1\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=-2\Rightarrow-2\le f\left(u\right)\le2\)
\(\Rightarrow-2\le m\le2\)
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Đáp án C
Ta có 6 x + 3 + m 2 x + m = 0 1 có nghiệm x ∈ 0 ; 1
1 ⇔ − m 2 x + 1 = 6 x + 3.2 x ⇔ − m = 6 x + 3.2 x 2 x + 1 ⇔ − m = 3 x + 3 2 − x + 1 = g x
g ' x = 3 x ln 3 1 + 2 − x + 2 − x ln 2 3 x + 3 1 + 2 − x 2 > 0 ⇒ g x đồng biến trên 0 ; 1 , g 0 = 2 , g 1 = 4
Điều kiện: x > 3 m > 0
Phương trình tương đương với:
Vì 0 < x - 3 3 = 1 - 3 x < 1 , ∀ x ∈ 3 ; + ∞ do đó phương trình có nghiệm
⇔ 0 < m - 9 < 1 ⇔ 9 < m < 10 . Vì vậy không có số nguyên nào thoả mãn.
Chọn đáp án D.