K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

20 tháng 8 2019

NV
16 tháng 12 2020

\(m+3\sqrt[3]{m+3cosx}=cos^3x\)

Đặt \(\sqrt[3]{m+3cosx}=t\Rightarrow m=t^3-3cosx\)

\(\Rightarrow t^3-3cosx+3t=cos^3x\)

\(\Leftrightarrow t^3+3t=cos^3x+3cosx\)

Hàm \(f\left(t\right)=t^3+3t\) có \(f'\left(t\right)=3t^2+3>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow t=cosx\) (hoặc là bạn liên hợp cũng được, tùy thích)

\(\Leftrightarrow m=t^3-3cosx=cos^3x-3cosx\)

Đặt \(cosx=u\in\left[-1;1\right]\Rightarrow f\left(u\right)=u^3-3u=m\)

Xét hàm \(f\left(u\right)=u^3-3u\) trên \(\left[-1;1\right]\)

\(f'\left(u\right)=3u^2-3\Rightarrow u=\pm1\)

\(f\left(-1\right)=2\) ; \(f\left(1\right)=-2\Rightarrow-2\le f\left(u\right)\le2\)

\(\Rightarrow-2\le m\le2\)

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

14 tháng 10 2019

Đáp án C

Ta có 6 x + 3 + m 2 x + m = 0 1  có nghiệm x ∈ 0 ; 1  

1 ⇔ − m 2 x + 1 = 6 x + 3.2 x ⇔ − m = 6 x + 3.2 x 2 x + 1 ⇔ − m = 3 x + 3 2 − x + 1 = g x  

g ' x = 3 x ln 3 1 + 2 − x + 2 − x ln 2 3 x + 3 1 + 2 − x 2 > 0 ⇒ g x  đồng biến trên 0 ; 1 , g 0 = 2 , g 1 = 4  

7 tháng 5 2018

Điều kiện:  x > 3 m > 0

Phương trình tương đương với: 

Vì 0 < x - 3 3 = 1 - 3 x < 1 , ∀ x ∈ 3 ; + ∞  do đó phương trình có nghiệm 

⇔ 0 < m - 9 < 1 ⇔ 9 < m < 10 . Vì vậy không có số nguyên nào thoả mãn.

Chọn đáp án D.

12 tháng 2 2019

Đáp án B

6 tháng 7 2019

Đáp án là A

14 tháng 11 2017

9 tháng 2 2019