K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 8 2021

\(y=x^4-2\left(m^2-m+1\right)x+m-1\)

\(y'=4x^3-4\left(m^2-m+1\right)x\)

\(y'=0\Leftrightarrow4x^3-4\left(m^2-m+1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{m^2-m+1}\end{cases}}\)

Khoảng cách giữa hai điểm cực tiểu là: 

\(2\sqrt{m^2-m+1}=2\sqrt{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge2\sqrt{\frac{3}{4}}\)

Dấu \(=\)khi \(m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\).

NV
30 tháng 6 2021

Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))

Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:

\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \sqrt{5}\)

\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn

12 tháng 4 2022

Đơn giản là bạn vẽ cái hàm bậc 4 đó ra và cho -m và -m-10 cắt thôi. Vì -m-10<-m nên -m-10 sẽ nằm ở dưới, còn -m nằm trên. Nên -m sẽ cắt 2 điểm và -m-10 cắt 4 điểm cho ta 6 điểm. Ngoài ra k còn trường hợp nào khác mà -m và -m-10 cắt thỏa mãn

12 tháng 4 2022

Mình cảm ơn ạ, cho mình hỏi là nếu m đi qua cực trị thì có được tính là có nghiệm không ạ?

13 tháng 5 2019

+ Đạo hàm y’ =  -3x2+ 6x+ 3( m2-1) = -3( x2- 2x-m2+1).

Đặt g( x) = x2- 2x-m2+1 là tam thức bậc hai có ∆ ' = m 2 .

+ Do đó hàm số đã cho có cực đại cực tiểu khi và chỉ khi y’ =0 có hai nghiệm phân biệt hay g(x)  =0  có hai nghiệm phân biệt

  ⇔ ∆ ' > 0 ⇔ m ≠ 0 .                   (1)

+ Khi đó y’ có các nghiệm là: 1±m .

 Tọa độ các điểm cực trị của đồ thị hàm số là A( 1-m ; -2-2m3) và B( 1+m ; -2+ 2m3).

Ta có: 

O A → ( 1 - m ; - 2 - 2 m 3 ) ⇒ O A 2 = ( 1 - m ) 2 + 4 ( 1 + m 3 ) 2 . O B → ( 1 + m ; - 2 + 2 m 3 ) ⇒ O B 2 = ( 1 + m ) 2 + 4 ( 1 - m 3 ) 2 .

Để A và B cách đều gốc tọa độ khi và chỉ khi OA= O B  hay  OA2= OB2

( 1 - m ) 2 + 4 ( 1 + m 3 ) 2 = ( 1 + m ) 2 + 4 ( 1 - m 3 ) 2 ⇔ - 4 m + 16 m 3 = 0

Đối chiếu với điều kiện (1), ta thấy chỉ m = ± 1 2   thỏa mãn yêu cầu bài toán.

Vậy không có giá trị nguyên nào của m thỏa mãn yêu cầu  bài toán.

Chọn  A.

NV
18 tháng 6 2021

\(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left[2x^2+6mx+3\left(m+1\right)\right]\)

Hàm có cực tiểu mà ko có cực đại khi và chỉ khi \(y'=0\) có đúng 1 nghiệm đơn

TH1: \(2x^2+6mx+3\left(m+1\right)=0\) có nghiệm \(x=0\)

\(\Leftrightarrow m=-1\)

TH2: \(2x^2+6mx+3\left(m+1\right)=0\) có ít hơn 2 nghiệm

\(\Leftrightarrow\Delta'=9m^2-6\left(m+1\right)\le0\)

\(\Leftrightarrow\dfrac{1-\sqrt{7}}{3}\le m\le\dfrac{1+\sqrt{7}}{3}\)

14 tháng 5 2017