Tìm hai số tự nhiên a,b biết BCNN = 240; ƯCLN = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a=m.c\)
\(b=n.c\)
\(\Rightarrow\) \(ƯCLN\left(a,b\right)=c\)
\(BCNN\left(a,b\right)=c.m.n\)
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow a=16m\)
\(b=16n\)
Sao cho \(ƯCLN\left(m,n\right)=1\)
\(BCNN\left(a,b\right)=16.m.n\)
\(\Rightarrow\)\(240=16.m.n\)
\(\Rightarrow\)\(m.n=15\)
m | 1 | 15 | 3 | 5 |
n | 15 | 1 | 5 | 3 |
a | 16 | 240 | 48 | 80 |
b | 240 | 16 | 80 | 48 |
Vây \(\left(a,b\right)\)thỏa mãn :
\(\left(16;240\right);\left(240;16\right);\left(80;48\right);\left(48;80\right)\)
Ta có: a.b = BCNN (a, b).ƯCLN (a, b)
=> a . b = 1440 x 240 = 345600
Vì ƯCLN (a, b) = 240 nên a = 240. m, b = 240. n và ( m, n ) = 1
Mà a.b = 345600 nên 240.m.240. n = 345600 => m . n = 6 và m, n nguyên tố cùng nhau.
Học sinh tiếp tục giải để tìm m, n sau đó tìm a, b
ƯCLN (a,b) = 16
=> a =16k ; b = 16q [ k,q thuộc N ; (k;q) = 1 ]
=> BCNN (a;b) = 240 = 16.k.q
=> k.q = 15 (1)
Lại có : b-a = 32
=> 16q-16k = 32
=> 16.(q-k) = 32
=> q-k = 2 (2)
Từ (1) và (2) => k = 3 ; q = 5
=> a = 48 ; q = 80
Vậy ............
Tk mk nha
Ta có a.b = ƯCLN(a;b).BCNN(a;b) = 12.240 = 2880
Lại có ƯCLN(a;b) = 12
=> Đặt a = 12m ; b = 12n (ƯCLN(m;n) = 1 ; m > n)
Khi đó a.b = 2880
<=> 12m.12n = 2880
=> m.n = 20
Lại có ƯCLN(m;n) = 1 ; m > n ta được
m.n = 5.4 = 20.1
Lập bảng xét các trường hợp
m | 20 | 5 |
n | 1 | 4 |
a | 240 | 60 |
b | 12 | 48 |
Vậy các cặp số (a;b) cần tìm là (240;12) ; (60;48)
theo bài ra ta có :
a*b=[a,b]*(a,b)
a*b=240*12
a.b=2880
Vì (a,b)=12 nên a chia hết cho 12 , b chia hết cho 12
suy ra a=12*k,b=12.q (k,q thuộc N*)
ta lại có
a*b=2880
12*k*12*q=2880
144*k*q=2880
k*p=2880/144
k*q=20
vì k,p có vai trò như nhau nên ( k,q)=1
nếu k=4,q=5 thì a=48, b=60
nếu k=1,q=20 thì a =12, b =240
vậy a=48, b=60
a=60,b=48
a=12,b=240
a=240,b=12
hai số đó là 40 và 120 nếu bạn tick mình sẽ có lời giải cho bạn