K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

1.6

2.6

3.0

11 tháng 1 2016

huhu júp mình đi các bạn @@@@@@

15 tháng 12 2018

c) Ta có: x+11 chia hết cho x+1

x+1+10 chia hết cho x+1

Vì x+1 chia hết cho x+1 nên 10 chia hết cho x+1.

Vậy x+1\(\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)

\(\Rightarrow x\in\left\{0;1;4;9\right\}\)

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
a. Để pt có 2 nghiệm phân biệt thì: $\Delta'=(-2)^2-m>0$

$\Leftrightarrow 4-m>0$

$\Leftrightarrow m< 4$

b. Với $m=3$ thì pt trở thành: $x^2-4x+3=0$
$\Leftrightarrow (x-1)(x-3)=0$
$\Leftrightarrow x-1=0$ hoặc $x-3=0$

$\Leftrightarrow x=1$ hoặc $x=3$

21 tháng 12 2019

a/

31.64+7.30+146.31=31.(64+146)+7.30

=31.210+7.30=6510+210=6720

b/23.32.28+23.35.8=23.(32.28+35.8)

=23.(9.28+243.8)=8.(252+1944)

=8.2196=17568

1 tháng 11 2021

\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)

1 tháng 11 2021

Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với

29 tháng 10 2017

\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)

\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)

ƯCLN(2^3*3^a;2^b*3^5)=2^2*3^5 nên b=2 và a<=5

BCNN(2^3*3^a;2^2*3^5)=2^3*3^6 nên a=6