K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

23 tháng 5 2019

11 tháng 7 2017

Đáp án B

Cách 1: Tư duy tự luận

Xét hàm số f x = sin x 1 + cos x  trên  0 ; π

Đạo hàm f ' x = cos x 1 + cos x − sin 2 x   = 2 cos 2 x + cos x − 1 ;

f ' x ⇔ cos x = − 1 cos x = 1 2 ⇔ x = π + k 2 π x = ± π 3 + k 2 π k ∈ ℤ

 Do x ∈ 0 ; π nên x = π 3 ; x = π .

Ta có

f 0 = f π = 0 ; f π 6 = 3 3 4

Vậy  

M = max 0 ; π f x = 3 3 4 ; m = min 0 ; π f x = 0

Cách 2: Sử dụng máy tính cầm tay

Quan sát bảng giá trị, ta thấy

M = max 0 ; π f x ≈ 1,295... ≈ 3 3 4 ; m = min 0 ; π f x = 0

20 tháng 11 2017

Đáp án C

Ta có  y = - 1 + 2 - 3 . 2 sin x c o s x + 2 cos 2 x = 2 - 3 . sin 2 x + cos 2 x .  

Áp dụng bất đẳng thức Bunhicopxki, có

2 - 3 . sin 2 x + cos 2 x 2 ≤ 2 - 3 2 + 1 2 . sin 2 2 x + cos 2 2 x = 8 - 4 3  

Suy ra y 2 ≤ 8 - 4 3 ⇔ 8 - 4 3 ≤ y ≤ 8 - 4 3 .  Vậy M + N + 2 = 2.

16 tháng 4 2017

4 tháng 11 2017

Chọn B

25 tháng 11 2017

Đáp án A

Ta có: y = 2 s i nx+cos 2 x

= 2 sin x + 1 − 2 sin 2 x → t → s inx y = f x = − 2 t 2 + 2 t + 1.

 Với x ∈ 0 ; π ⇒ t ∈ 0 ; 1 .

Xét hàm số f t = − 2 t 2 + 2 t + 1 trên 0 ; 1 có f ' t = − 4 t + 2.

Ta có: f ' t = 0 ⇔ t = 1 2 .

Tính f 0 = 1 ; f 1 2 = 3 2 ; f 1 = 1.

Vậy M = 3 2 m = 1 ⇒ 2 M + m = 4.

21 tháng 7 2017

Đáp án B

1 tháng 9 2021

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

12 tháng 5 2018