tìm điều kiện xác định rồi suy ra tập nghiệm của mỗi bất phương trình sau , giải thích : a) \(\sqrt{x}\) > \(\sqrt{-x}\) ; c) x + \(\frac{1}{x-3}\) >= 2 + \(\frac{1}{x-3}\) ; d) \(\frac{x}{\sqrt{x-2}}\) < \(\frac{2}{\sqrt{x-2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đkxđ: \(\left\{{}\begin{matrix}5-x\ge0\\x-10>0\\\left(x-4\right)\left(x+5\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x>10\\x\ne4\\x\ne-5\end{matrix}\right.\)\(\Leftrightarrow x\in\varnothing\).
Vậy BPT vô nghiệm.
ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\\x+1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2< =x< =4\\x< >-1\end{matrix}\right.\Leftrightarrow x\in\left[2;4\right]\)
ĐKXĐ: `{(5x-1>=0),(x+2>=0),(7-x>=0):}`
`<=>{(x>=1/5),(x>=-2),(x<=7):}`
`<=>1/5 <=x<=7`
`ĐKXĐ: {(5x - 1 >= 0),(x+2 >=0),(7-x >=0):}`
`<=> {(x >= 1/5),(x>= -2),(x <=7):}`
`<=> 1/5 <= x <= 7`
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
Điều kiện:`x>=0`
lời giải bpt:
`sqrtx-3x<=0`
`<=>sqrtx<=3x`
`<=>x<=9x^2`
`<=>x(9x-1)>=0`
`<=>9x-1>=0(do \ x>=0)`
`<=>x>=1/9`
Vậy ...
\(\Leftrightarrow\sqrt{-x^2-2x+15}-x^2-2x+15\le a+15\)
Đặt \(\sqrt{-x^2-2x+15}=t\ge0\)
Đồng thời ta có: \(\sqrt{-x^2-2x+15}=\sqrt{\left(x+5\right)\left(3-x\right)}\le\dfrac{1}{2}\left(x+5+3-x\right)=4\)
\(\Rightarrow0\le t\le4\)
BPT trở thành: \(t^2+t\le a+15\Leftrightarrow t^2+t-15\le a\) ; \(\forall t\in\left[0;4\right]\)
\(\Leftrightarrow a\ge\max\limits_{t\in\left[0;4\right]}\left(t^2+t-15\right)\)
Xét hàm \(f\left(t\right)=t^2+t-15\) trên \(\left[0;4\right]\)
\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)
\(\Rightarrow f\left(t\right)_{max}=4\Rightarrow a\ge4\)
em moi hoc lop 6
khó wa bạn ơi tick nha tí mik tìm cách giải cho nha