Cho f(x)=x(1-2x)+(2x^2-x+4); g(x)=x(x-5)-x(x+2)+7x.Tính f(x)+g(x)và f(x)-g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
a) Ta có: f(x)=-3
<=>x5-2x2+x4-x5+3x2-x4-3+2x=-3
<=>(x5-x5)+(-2x2+3x2)+(x4-x4)+2x-3=-3
<=>x2+2x-3=-3
<=>x2+2x=0
<=>x(x+2)=0
<=>x=0 hoặc x+2=0
<=>x=0 hoặc x=-2
Vậy..........
b)đa thức f(x) có nghiệm
<=>f(x)=0
<=>x2+2x-3=0
<=>x2+3x-x-3=0
<=>x(x+3)-(x+3)=0
<=>(x-1)(x+3)=0
<=>x-1=0 hoặc x+3=0
<=>x=1 hoặc x=-3
Vậy nghiệm của đa thức f(x) là x=-3;x=1
\(f\left(x\right)+g\left(x\right)=\left[x\left(1-2x\right)+\left(2x^2-x+4\right)\right]+\left[x\left(x-5\right)-x\left(x+2\right)+7x\right]\)
\(=x-2x^2+2x^2-x+4+x^2-5x-x^2-2x+7x\)
\(=4\)
\(f\left(x\right)-g\left(x\right)=\left[x\left(1-2x\right)+\left(2x^2-x+4\right)\right]-\left[x\left(x-5\right)-x\left(x+2\right)+7x\right]\)
\(=x-2x^2+2x^2-x+4-x^2+5x+x^2+2x-7x\)
\(=4\)