K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}-3x=2x+5\\y=-3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)

Thay x=-1 vào (d3), ta được:

y=-1+4=3

Vậy: (d1), (d2) và (d3) đồng quy

NV
20 tháng 11 2019

(d3): \(3x+2y=1\Rightarrow y=-\frac{3}{2}x+\frac{1}{2}\)

Phương trình tọa độ giao điểm A của (d1) và (d2):

\(\left\{{}\begin{matrix}y=5x-3\\y=-2x+4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) \(\Rightarrow A\left(1;2\right)\)

Gọi pt (d) có dạng \(y=ax+b\)

Do (d) qua A và song song với (d3) nên:

\(\left\{{}\begin{matrix}a=-\frac{3}{2}\\a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{2}\\b=\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+\frac{7}{2}\)

16 tháng 5 2020

tại sao a=3/2

a+b=2 vậy

14 tháng 12 2021

Xét pthđ giao điểm của d1 và d2
x-4=2x+3
<=> x= -7
Thay x=-7 vào d1 
y=-7-4=-11 => A(-7:-11) là giao điểm d1 và d2
Thay x=-7 vào d3 -> y=m(-7)+m+1=-6m+1=-11
- Để d1 d2 d3 đq -> A ∈∈d3
-> -6m+1=-11
-6m=-12
m=2 
Vậy m=2 thì 3 đường thẳng d1 , d2 , d3 đq 

11 tháng 11 2018

Ta có: (d2): y=3x-2y=1 => y: 3x-2y-1

Phương trình tung độ giao điểm của (d1) và (d2) là:

3x-2 = 3x-2y-1 => 3x-3x+2y=-1+2 => 2y=1 => y = 1/2

                                                               => x = (1/2+2):3 = 5/6

Vậy (d1) và (d2) cùng đi qua điểm C(5/6; 1/2)

Thay x = 5/6 và y = 1/2 vào (d3) ta được: 1/2 = (m-2).5/6+2m-3

                                                         => 1/2 = 5/6m - 5/3 + 2m - 3

                                                         => 31/6 = 17/6 m

                                                         => m    = 31/17

Vậy m = 31/17 thì 3 đường thẳng (d1);(d2);(d3) cùng đi qua 1 điểm

8 tháng 12 2023

a) Phương trình hoành độ giao điểm của d₁ và d₂

x + 2 = 5 - 2x

⇔ x + 2x = 5 - 2

⇔ 3x = 3

⇔ x = 1

Thay x = 1 vào d₁ ta có:

y = 1 + 2 = 3

⇒ Giao điểm của d₁ và d₂ là A(1; 3)

Thay tọa độ điểm A vào d₃ ta có:

VT = 3

VP = 3.1 = 3

⇒ VT = VP

Hay A ∈ d₃

Vậy d₁, d₂ và d₃ đồng quy

b) Thay tọa độ điểm A(1; 3) vào d₄ ta có:

m.1 + m - 5 = 3

⇔ 2m - 5 = 3

⇔ 2m = 3 + 5

⇔ 2m = 8

⇔ m = 8 : 2

⇔ m = 4

Vậy m = 4 thì d₁, d₂ và d₄ đồng quy

18 tháng 9 2021

Gọi \(A\left(x_0;y_0\right)\) là giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}y_0=-3x_0-7\\y_0=2x_0+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{4}{5}\\y_0=-\dfrac{23}{5}\end{matrix}\right.\)

\(\Rightarrow M\left(-\dfrac{4}{5};-\dfrac{23}{5}\right)\)

11 tháng 11 2018

đt d2 : 3x - 2y = 1 => y = 3/2x - 1/2

Hai đt d1 và d2 có hệ số góc khác nhau nên chúng cắt nhau tại điểm M.Xét pt hoành độ : 3x - 2 = 3/2x - 1/2 <=> x = 1 => y = 1.

Vậy tọa độ điểm \(M\left(1;1\right)\)

Để cho d1,d2,d3 cùng đi qua 1 điểm thì d3 phải di qua M.

\(\Rightarrow\left(d_3\right)\in M\Leftrightarrow1=\left(m-2\right).1+2m-3\Leftrightarrow m=2\)

Vậy ...

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

Để cm 3 đường thẳng trên đồng quy, ta sẽ tìm giao điểm của $(d_1)$ và $(d_2)$, rồi chứng minh giao điểm đó cũng thuộc $(d_3)$ là được.

PT hoành độ giao điểm $(d_1)$ và $(d_2)$

\(-3x=2x+5\)

\(\Leftrightarrow -5x=5\Rightarrow x=-1\)

\(x=-1\rightarrow y=2x+5=-3x=3\)

Vậy giao điểm của $(d_1),(d_2)$ là \((-1,3)\)

Ta thấy: \(3=-1+4\) nên $(-1,3)$ cũng thuộc đường thẳng \(d_4: y=x+4\)

Vậy 3 đường thẳng trên đồng quy tại một điểm $(-1,3)$

13 tháng 11 2023

Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}4x-3=3x-1\\y=4x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x-3x=-1+3\\y=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\cdot2-3=5\end{matrix}\right.\)

Thay x=2 và y=5 vào y=x+3, ta được:

 2+3=5

=>5=5(đúng)

=>(d1),(d2),(d3) đồng quy