Cho tam giác ABC có \(BC=7;\widehat{ABC}=42^0;\widehat{ACB}=35^0\). Gọi H là chân đường cao của tam giác ABC kẻ từ A. Hãy tính AH (làm tròn kết quả đến chữ số thập phân thứ ba)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do BC > AC > AB ⇒ ∠A > ∠B > ∠C
Ta có AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Vậy tam giác ABC vuông tại A (1 điểm)
Câu 1:
Chú ý độ dài 3 cạnh của tam giác là sai thì \(a+b=7=c\)
Nếu là cạnh của tam giác thì: \(\left\{{}\begin{matrix}a+b>c\\a+c>b\\c+b>a\end{matrix}\right.\)
Câu 2: Ta có:
\(m_a=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{AC^2+AB^2}{2}-\dfrac{BC^2}{4}}\)
\(\Rightarrow m_a=\sqrt{\dfrac{9^2+4^2}{2}-\dfrac{6^2}{4}}\)
\(\Rightarrow m_a\approx6,3\)
Ta có: \(p=\dfrac{AB+AC+BC}{2}=\dfrac{4+6+9}{2}=\dfrac{19}{2}\)
\(\Rightarrow S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{\dfrac{19}{2}\cdot\left(\dfrac{19}{2}-6\right)\cdot\left(\dfrac{19}{2}-9\right)\cdot\left(\dfrac{19}{2}-4\right)}\approx9,5\)
\(\Rightarrow h_b=2\cdot\dfrac{S_{ABC}}{b}\Rightarrow h_b=2\cdot\dfrac{9,5}{9}\approx2,1\)
Giải
Gọi H là đường cao kẻ từ H => S= AH.BC/2= 559 => AH= 2.559/43 = 26
Khi BC tăng 7cm => S = AH.(BC + 7)/2 = 650 (cm2)
Vậy độ tăng diện tích la : = 650- 599 = 51 (cm2)
Độ cao của diện tích ban đầu là :
\(\frac{559.2}{43}=26\left(cm\right)\)
Độ dài đáy sau khi thêm là :
43 + 7 = 50 (cm)
Diện tích sau khi thêm là :
\(\frac{50.26}{2}=650\left(m^2\right)\)
Diện tích ban đầu hơn diện tích sau khi thêm là :
650 - 559 = 91 cm2
độ cao của diện tích ban đầu là :
\(\frac{559}{43}\)=26 { cm }
độ cao đáy sau khi thêm là :
43+7=50 { cm }
diện tích sau khi thêm là :
\(\frac{50,26}{2}\)=650 \(\left\{cm^2\right\}\)
diện tích ban đầu hơn diện tích sau khi thêm là :
650-559=91 \(\left\{cm^2\right\}\)
đáp số : 91 \(cm^2\)
Đáp án là B
Xét tam giác ABC có:
A B 2 + A C 2 = 7 2 + 24 2 = 625 = B C 2
⇒ ΔABC vuông tại A
⇒ Tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC
⇒ Bán kính đường tròn ngoại tiếp là 12,5 cm
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{C^2} + A{B^2} - 2.AC.AB.\cos A\)
\( \Rightarrow \cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{7^2} + {6^2} - {8^2}}}{{2.7.6}} = \frac{1}{4}\)
Lại có: \({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} \)(do \({0^o} < A \le {90^o}\))
\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{1}{4}} \right)}^2}} = \frac{{\sqrt {15} }}{4}\)
Áp dụng định lí sin trong tam giác ABC ta có:\(\frac{{BC}}{{\sin A}} = 2R\)
\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{8}{{2.\frac{{\sqrt {15} }}{4}}} = \frac{{16\sqrt {15} }}{{15}}.\)
Vậy \(\cos A = \frac{1}{4};\)\(\sin A = \frac{{\sqrt {15} }}{4};\)\(R = \frac{{16\sqrt {15} }}{{15}}.\)