K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Sửa đề \(\frac{x}{3}=\frac{y}{4}\)\(\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=372\)

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) (1)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)

Do đó : 

\(\frac{x}{15}=6\Rightarrow x=6.15=90\)

\(\frac{y}{20}=6\Rightarrow y=6.20=120\)

\(\frac{z}{28}=6\Rightarrow z=6.28=168\)

6 tháng 8 2017

Ta có:

\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và \(2x+3y-z=372\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{372}{62}=6\)

\(\hept{\begin{cases}\frac{x}{15}=6\Rightarrow x=6.15=90\\\frac{y}{20}=6\Rightarrow y=6.20=120\\\frac{z}{28}=6\Rightarrow z=6.28=168\end{cases}}\)

Vậy \(x=90;y=120;z=168\)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

26 tháng 9 2017

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=16\)

\(\frac{y}{12}=2\Rightarrow y=24\)

\(\frac{z}{5}=2\Rightarrow z=10\)

30 tháng 9 2017

k minh nha

14 tháng 12 2017

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=8.2=16\\y=2.12=24\\z=15.2=30\end{cases}}\)

16 tháng 7 2016

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

16 tháng 7 2016

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30

21 tháng 7 2015

\(dat:\frac{x}{2}=\frac{y}{5}=k\)

x=2k   ;  y=5k

x.y=10k2

10 = 10k2

k= 1

k  = +-1

Voi : k=1 = > x=1.2=2 ; y=5.1=5

voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5

21 tháng 7 2015

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Ap dung tinh chat day ti so bang nhau ta co : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra  : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)

nhieu qua lam ko het

23 tháng 7 2016

Ta quy đồng mẫu số để có \(\frac{y}{12}\)chung ( câu này ko cần ghi vào vở đó mình nói cho bạn hiểu thôi)

Ta có\(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)

         \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)

=) \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=) \(\frac{x}{8}=2\)=) x = 16

     \(\frac{y}{12}=2\)=) y = 24

      \(\frac{z}{15}=2\)=) z = 30

Vậy x=16,y=24 và z=30

Cái gì ko hiểu cứ kết bạn với mình ,mình giảng cho

23 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3.4}=\frac{z}{3.5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=16\)

\(\frac{y}{12}=2\Rightarrow y=24\)

\(\frac{z}{15}=2\Rightarrow z=30\)

24 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\) (2)

Từ (1) và (2)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=16\)

\(\frac{y}{12}=2\Rightarrow y=24\)

\(\frac{z}{15}=2\Rightarrow z=30\)

Chúc bạn học tốt ^^

24 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x + y + z = 10

Ta có \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)

Quy đồng: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-5}=\frac{10}{5}=2\)

Vậy \(\frac{x}{8}=2\Rightarrow2.8=16\)

       \(\frac{y}{12}=2\Rightarrow2.12=24\)

       \(\frac{z}{15}=2\Rightarrow2.15=30\)

31 tháng 10 2016

\(\Leftrightarrow30x^2+20y^2+15z^2=12x^2+12y^2+12z^2.\)

\(\Leftrightarrow18x^2+8y^2+3z^2=0\)(1)

\(x^2\ge0\Rightarrow18x^2\ge0\)

\(y^2\ge0\Rightarrow8y^2\ge0\)

\(z^2\ge0\Rightarrow3z^2\ge0\)

=> (1) = 0  khi \(18x^2=8y^2=3z^2=0\Rightarrow x=y=z=0\)

18 tháng 10 2017

\(pt\Leftrightarrow\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\frac{x^2+y^2+z^2}{5}=0\)

\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

\(\Leftrightarrow\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

Ta thấy \(VT\ge0\forall x;y;z\) nên để dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\)