K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

ta có : \(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\Leftrightarrow\dfrac{x^2}{36}=\dfrac{y^2}{16}=\dfrac{z^2}{9}\)

áp dụng tính chất dãy tỉ số bằng nhau

ta có : \(\dfrac{x^2-y^2-z^2}{36-16-9}=\dfrac{1331}{11}=121\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{36}=121\\\dfrac{y^2}{16}=121\\\dfrac{z^2}{9}=121\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=4356\\y^2=1936\\z^2=1089\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\pm66\\y=\pm44\\z=\pm33\end{matrix}\right.\)

vậy \(x=\pm66;y=\pm44;z=\pm33\)

19 tháng 8 2017

Ta có : \(\dfrac{x}{6}=\dfrac{x^2}{36};\dfrac{y}{4}=\dfrac{y^2}{16};\dfrac{z}{3}=\dfrac{z^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau có :

\(\dfrac{x^2}{36}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2-y^2-z^2}{36-16-9}=\dfrac{1331}{11}=121\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{36}=121\\\dfrac{y^2}{16}=121\\\dfrac{z^2}{9}=121\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=4356\\y^2=1936\\z^2=1089\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=66\\y=44\\z=33\end{matrix}\right.\)

5 tháng 11 2021

\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{11}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=11k\end{matrix}\right.\)\(\Rightarrow xyz=528k^3=-528\Rightarrow k=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=8.\left(-1\right)=-8\\y=6.\left(-1\right)=-6\\z=11.\left(-1\right)=-11\end{matrix}\right.\)

19 tháng 11 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{6}=\dfrac{x-y}{5-3}=\dfrac{4}{2}=2\)

\(\dfrac{x}{5}=2\Rightarrow x=10\\ \dfrac{y}{3}=2\Rightarrow y=6\\ \dfrac{z}{6}=2\Rightarrow z=12\)

19 tháng 11 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{6}=\dfrac{x-y}{5-3}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=12\end{matrix}\right.\)

 

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

4 tháng 1 2022

a) \(\dfrac{5}{x}=\dfrac{-10}{12}.\Rightarrow x=-6.\)

b) \(\dfrac{4}{-6}=\dfrac{x+3}{9}.\Rightarrow x+3=-6.\Leftrightarrow x=-9.\)

c) \(\dfrac{x-1}{25}=\dfrac{4}{x-1}.\left(đk:x\ne1\right).\Leftrightarrow\dfrac{x-1}{25}-\dfrac{4}{x-1}=0.\)

\(\Leftrightarrow\dfrac{x^2-2x+1-100}{25\left(x-1\right)}=0.\Leftrightarrow x^2-2x-99=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=11.\\x=-9.\end{matrix}\right.\) \(\left(TM\right).\)

 

 

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

25 tháng 11 2023

\(\dfrac{x}{-2}=\dfrac{y}{3}\)

=>\(\dfrac{x}{-4}=\dfrac{y}{6}\)

mà \(\dfrac{y}{6}=\dfrac{z}{2}\)

nên \(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}\)

mà x+y+z=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}=\dfrac{x+y+z}{-4+6+2}=\dfrac{28}{4}=7\)

=>\(x=-4\cdot7=-28;y=6\cdot7=42;z=2\cdot7=14\)

21 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{-3x+3-4y-12+5z-25}{-6-16+30}=\dfrac{50+3-12-25}{8}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x-1=4\\y+3=8\\z-5=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)

20 tháng 2 2023

12 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Do đó: x=-70; y=-135; z=-84

12 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x10=y15=z12=x−y+z10−15+12=−497=−7x10=y15=z12=x−y+z10−15+12=−497=−7

Do đó: x=-70; y=-135; z=-84

15 tháng 1 2022

Bài 2:

\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)

\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)

\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)