Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Do đó: x=-70; y=-135; z=-84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x10=y15=z12=x−y+z10−15+12=−497=−7x10=y15=z12=x−y+z10−15+12=−497=−7
Do đó: x=-70; y=-135; z=-84
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)
Do đó: x=3; y=2; z=1
a: =>\(\dfrac{x}{-5}=\dfrac{y}{-7}=\dfrac{z}{2}=\dfrac{x-y+z}{-5+7+2}=\dfrac{-28}{4}=-7\)
=>x=35; y=49; z=-14
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/-5=y/-7=z/2=(x-y+z)/((-5)-(-7)+2)=-28/4=-7`
`-> x/-5=y/-7=z/2=-7`
`-> x=-7*-5=35, y=-7*-7=49, z=-7*2=-14`
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{11}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=11k\end{matrix}\right.\)\(\Rightarrow xyz=528k^3=-528\Rightarrow k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=8.\left(-1\right)=-8\\y=6.\left(-1\right)=-6\\z=11.\left(-1\right)=-11\end{matrix}\right.\)
\(\dfrac{x}{-2}=\dfrac{y}{3}\)
=>\(\dfrac{x}{-4}=\dfrac{y}{6}\)
mà \(\dfrac{y}{6}=\dfrac{z}{2}\)
nên \(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}\)
mà x+y+z=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}=\dfrac{x+y+z}{-4+6+2}=\dfrac{28}{4}=7\)
=>\(x=-4\cdot7=-28;y=6\cdot7=42;z=2\cdot7=14\)