K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

23 tháng 8 2017

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

17 tháng 3 2021

Đề bài bị nhầm phải ko bạn.

Ta đặt P=\(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\) .Ta cần chứng minh P\(\ge3\)\(\dfrac{b^3}{a}+ab\ge2b^2;\dfrac{a^3}{c}+ac\ge2a^2;\dfrac{c^3}{b}+bc\ge2c^2\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge2a^2+2b^2+2c^2-ab-ca-bc\ge ab+bc+ca\Rightarrow2\cdot P\ge2ab+2bc+2ca\left(1\right)\) \(\dfrac{b^3}{a}+a+1\ge3b;\dfrac{a^3}{c}+c+1\ge3a;\dfrac{c^3}{b}+b+1\ge3c\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge3a+3b+3c-3-a-b-c=2a+2b+2c-3\left(2\right)\) Cộng từng vế của 2 bđt (1) và (2) ta được:

\(\Rightarrow3\cdot\left(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=12-3=9\Rightarrow3P\ge9\Rightarrow P\ge3\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

17 tháng 3 2021

sao 2a\(^2+2b^2+2c^2-ab-ac-bc>ab+bc+ac\) vậy

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

NV
22 tháng 3 2021

Đề đúng không em nhỉ?

Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)

Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương

NV
19 tháng 9 2021

\(\dfrac{a}{a+2b^3}=a-\dfrac{2ab^3}{a+b^3+b^3}\ge a-\dfrac{2ab^3}{3\sqrt[3]{ab^6}}=a-\dfrac{2}{3}.b\sqrt[3]{a^2}\ge a-\dfrac{2}{9}b\left(a+a+1\right)\)

\(\Rightarrow\dfrac{a}{a+2b^3}\ge a-\dfrac{2}{9}\left(2ab+b\right)\)

Tương tự: \(\dfrac{b}{b+2c^3}\ge b-\dfrac{2}{9}\left(2bc+c\right)\) ; \(\dfrac{c}{c+2a^3}\ge c-\dfrac{2}{9}\left(2ac+a\right)\)

Cộng vế:

\(A\ge a+b+c-\dfrac{2}{9}\left(2ab+2bc+2ca+a+b+c\right)=3-\dfrac{2}{9}\left[2\left(ab+bc+ca\right)+3\right]\)

\(A\ge3-\dfrac{2}{9}\left[\dfrac{2}{3}\left(a+b+c\right)^2+3\right]=1\)

NV
9 tháng 8 2021

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm