TÌm các số tự nhiên y và z khác 0 sao cho ;
\(\frac{1}{y}+\frac{1}{z}=\frac{1}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(ƯCLN\left(x,y\right)=15\)nên ta đặt \(x=15a,y=15b;\left(a,b\right)=1\).
\(x+y=15a+15b=15\left(a+b\right)=60\Leftrightarrow a+b=4\)
mà \(\left(a,b\right)=1\)nên ta có bảng giá trị:
a | 1 | 3 |
b | 3 | 1 |
x | 15 | 45 |
y | 45 | 15 |
\(10x=14y=15z\)
\(BCNN\left(10;14;15\right)=2.3.5.7=210\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{210}{10}=21\\y=\dfrac{210}{14}=15\\z=\dfrac{210}{15}=14\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(21;15;14\right)\)
Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}1\)
Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)
=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3
Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)
mà y >2 => y = 3 hoặc 4
y = 3 => z = 6;
y = 4 => z = 4
nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)
theo đề bài x<= y nên y = 3 => z = 3
Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=>M>1(1)
Lại có:
Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)
Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)
=>M<2(2)
Từ (1) và (2)
=>1<M<2
=>M không là số tự nhiên
=>ĐPCM
Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)
Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)
\(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)
+) Trường hợp 1 :
\(z=1\)thì \(xy=4\left(x+y+1\right)\Leftrightarrow\left(x-4\right)\left(y-4\right)=20\)
Nên \(x-4\)và \(y-4\) là ước của 20 với \(x-4\ge y-4\ge-3\) ( do \(x\ge y\ge z=1)\)
x - 4 | 20 | 10 | 5 | 4 | 2 | 1 |
y - 4 | 1 | 2 | 4 | 5 | 10 | 20 |
x | 24 | 14 | 9 | 8 | 6 | 5 |
y | 5 | 6 | 8 | 9 | 14 | 24 |
Vậy ta được cặp \(\left(x;y\right)\)là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)
Xét tiếp trường hợp \(z=2;z=3\)
\(\frac{1}{y}+\frac{1}{z}=\frac{1}{6}\Leftrightarrow\frac{y+z}{yz}=\frac{1}{6}\)
\(\Rightarrow6y+6z=yz\Leftrightarrow6y+6z-yz=0\)
\(\Leftrightarrow\left(6y-yz\right)-\left(36-6z\right)+36=0\)
\(\Leftrightarrow\left(6-z\right)\left(y-6\right)=-36\)
đến đây bạn tự xét tiếp nhé:)