cho â,b,c là các số nguyên dương và a+b=1
cmr;\(\frac{1}{a+1}+\frac{1}{b+1}>=\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a;b;c dương:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đặt vế trái BĐT là P, ta có:
\(\dfrac{ab}{1-c^2}=\dfrac{ab}{\left(1-c\right)\left(1+c\right)}=\dfrac{ab}{\left(a+b\right)\left(a+c+b+c\right)}=\dfrac{ab}{\sqrt{a+b}.\sqrt{a+b}\left(a+c+b+c\right)}\)
\(\le\dfrac{ab}{\sqrt[]{2\sqrt[]{ab}}.\sqrt[]{a+b}.2\sqrt[]{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt[4]{\left(ab\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Tương tự:
\(\dfrac{bc}{1-a^2}\le\dfrac{\sqrt[4]{\left(bc\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\dfrac{ca}{1-b^2}\le\dfrac{\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Cộng vế:
\(P\le\dfrac{\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nên ta chỉ cần chứng minh:
\(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\le\dfrac{3}{2\sqrt[]{2}}\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Mà \(\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)\)
Nên ta chỉ cần chứng minh:
\(\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\left(a+b+c\right)\left(ab+bc+ca\right)\)
Thật vậy:
\(\left(\sqrt[4]{ab}.\sqrt[]{ab}+\sqrt[4]{bc}.\sqrt[]{bc}+\sqrt[4]{ca}.\sqrt[]{ca}\right)^2\le\left(\sqrt[]{ab}+\sqrt[]{bc}+\sqrt[]{ca}\right)\left(ab+bc+ca\right)\)
\(\le\left(a+b+c\right)\left(ab+bc+ca\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
B. Tổng của hai số nguyên dương là một số nguyên dương.
C và D tùy.
A thì ngược lại mới đúng nhé
VD : - 1 > - 2
| - 1 | = 1 < | - 2 | = 2
B đúng (VD: 3 + 2 = 5)
A sai (VD: -3 > -4 \(\Rightarrow\) (|-3| = 3) < (|-4| = 4))
C sai (VD: -2 + 3 = 1 là số nguyên dương)
D sai (VD: 3 - 4 = -1 là số nguyên âm)
Chúc bn học tốt!
\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{1}{9}\left(a+b+c\right)^3}=\dfrac{1^2}{1+\dfrac{1}{9}.1^3}=\dfrac{9}{10}\)
Có \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)
\(\Leftrightarrow\dfrac{a+1}{a}.\dfrac{b+1}{b}\ge9\)
\(\Leftrightarrow ab+a+b+1\ge9ab\) ( vì ab >0)
\(\Leftrightarrow a+b+1\ge8ab\)
\(\Leftrightarrow2\ge8ab\) \(\left(a+b=1\right)\)
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\left(a+b=1\right)\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng)
\(\Leftrightarrowđpcm\)
a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)
ta co :
\(\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\)>=\(\frac{3}{4}\)
\(\frac{3}{ab+a+b+1}\)>=\(\frac{3}{4}\)
\(\frac{3}{ab+2}\)>=\(\frac{3}{4}\)
=>\(\frac{1}{ab+2}\)>=\(\frac{1}{4}\)
=>4>=ab+2
=>2>=ab
=>2>=a(1-a) (vi a+b=1)
=>2>=a-a^2
=>a^2-a+2>=0
=>(a-\(\frac{1}{2}\))^2+\(\frac{7}{4}\)>=0 luon dung
=>\(\frac{1}{a+1}\)+\(\frac{1}{b+1}\)>=\(\frac{3}{4}\)
a,b dương áp dụng bđt svac xơ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\)
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
Đề sai à bạn