Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a,b,c\) là các số dương suy ra:
\(a>0;b>0;c>0\)
Suy ra: \(a+b+c>0\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\left(a+b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow a+b+c=0\) hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)
Do \(a+b+c>0\)
Suy ra: \(a^2+b^2+c^2-ab-bc-ca=0\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Suy ra: \(a-b=0;b-c=0\) và \(c-a=0\)
Suy ra: \(a=b=c\)
Suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)
Ta có: \(\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)=0\)
Vậy ...
Sau khi giải bài này xong mình cảm thấy hoa mắt và chóng mặt, mong GP sẽ gấp đôi :)
vì \(a+b+c=1\)
\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)
\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)
ta có pt:
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)
áp dụng bđt cô- si( cauchy) gọi pt là P
\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)
\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)
\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)
\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)
dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
<=>ĐPCM
Dùng súng lục: "siêu tôc thần sầu" không đủ công lực tiếp nhận
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=\left(\frac{a}{a}+\frac{b}{b}+\frac{c}{c}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\\ \)
nhân phân phối bình thường ra thôi : \(t+\frac{1}{t}\ge2\)khi t>0 đẳng thức khi t=1
Áp vào trên => VT>=(1+1+1)+(2+2+2)=9
thay a+b+c=6 =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{6}=\frac{3}{2}\) =>dpcm
đẳng thúc khi t=1=> a/b=b/c=a/c=> a=b=c
a+b+c=6=> a=b=c=2
Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)
Do đó
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)
\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)
\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
Ta có : \(P=a+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Mặt khác \(\frac{x}{y}+\frac{y}{x}\ge2\)Với mọi \(x,y\)dương \(\Rightarrow P=3+2+2+2=9\)
Vậy \(Pmir=9\)khi \(a=b=c\)
ta co :
\(\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\)>=\(\frac{3}{4}\)
\(\frac{3}{ab+a+b+1}\)>=\(\frac{3}{4}\)
\(\frac{3}{ab+2}\)>=\(\frac{3}{4}\)
=>\(\frac{1}{ab+2}\)>=\(\frac{1}{4}\)
=>4>=ab+2
=>2>=ab
=>2>=a(1-a) (vi a+b=1)
=>2>=a-a^2
=>a^2-a+2>=0
=>(a-\(\frac{1}{2}\))^2+\(\frac{7}{4}\)>=0 luon dung
=>\(\frac{1}{a+1}\)+\(\frac{1}{b+1}\)>=\(\frac{3}{4}\)
a,b dương áp dụng bđt svac xơ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\)
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
Đề sai à bạn