giải hệ phương trình:
4x^2y^2+3xy+1=8y^2;
(2xy+1)(8y+x)=27y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^3+3x^2y-3xy^2-2x^3=0\)
\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)
\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)
\(\Rightarrow y=2x\)
Thế xuống dưới:
\(x^4-2x^3-x^2+2x+1=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:
\(t^2-2t+1=0\Leftrightarrow t=1\)
\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)
\(\left\{{}\begin{matrix}9x^2-3xy+2y^2=23\\7x^2+6xy-8y^2=-37\end{matrix}\right.\)\(\left(hpt\right)\)
\(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}9\left(t.y\right)^2-3t.y^2+2y^2=23\left(1\right)\\7\left(ty\right)^2+6t.y^2-8y^2=-37\left(2\right)\end{matrix}\right.\)
\(\Rightarrow-37\left[9\left(t.y\right)^2-3ty^2+2y^2\right]=23\left[7\left(ty\right)^2+6ty^2-8y^2\right]\)
\(\Leftrightarrow494\left(ty\right)^2+27ty^2-110y^2=0\left(3\right)\)
\(x=y=0\) \(không\) \(là\) \(nghiệm\) \(hpt\)
\(y\ne0\Rightarrow\left(3\right)\Leftrightarrow494t^2+27t-110=0\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{110}{247}\Rightarrow x=\dfrac{110}{247}.y\left(4\right)\\t=-\dfrac{1}{2}\Rightarrow x=-\dfrac{1}{2}.y\left(5\right)\end{matrix}\right.\)
\(thay\left(4\right)và\left(5\right)vào-hpt\Rightarrow x,y=.....\)(đến đây dễ rồi bạn tự tìm x,y)
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.