Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có dạng tổng quát như thế này nhé:
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{k+n}\)
Trong trường hợp này là \(\frac{-4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n+4\right)n}=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)
Đáp án là: \(\frac{1}{n+4}-1\)
4/1.5 + 4/5.9 + ... + 4/97.101 = 2x+5/101
=> 1 - 1/5 + 1/5 - 1/9 + ... + 1/97 - 1/101 = 2x+5/101
=> 1 - 1/101 = 2x+5/101
=> 100/101 = 2x+5/101
=> 2x + 5 = 100
=> 2x = 100 - 5 = 95
=> x = 95/2
Vậy x = 95/2
Ủng hộ mk nha ♡_♡☆_☆
\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{97.101}=\frac{2x+5}{101}\)
\(4-\frac{4}{5}+\frac{4}{5}-\frac{5}{9}+...+\frac{4}{97}-\frac{4}{101}=\frac{2x+5}{101}\)
\(4-\frac{4}{101}=\frac{2x+5}{101}\)
\(\frac{400}{101}=\frac{2x+5}{101}\)
\(\Rightarrow2x+5=400\)
\(\Rightarrow x=197,5\)
Vậy \(x=197,5\)
\(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{177.181}+\frac{4}{181.185}\)
\(=\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{177}-\frac{1}{181}\right)+\left(\frac{1}{181}-\frac{1}{185}\right)\)
\(=\frac{1}{1}-\frac{1}{185}\)
\(=\frac{184}{185}\)
M = - ( 4/1.5 + 4/5.9 + ..................+ 4/(n-4).n
M = - (1-1/5 + 1/5 - 1/9 +..............+1/(n-4) - 1/n
M = -(1-1/n)
M = -1 + 1/n
M = -n + 1
Ta có : \(-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-.....-\frac{4}{\left(n+4\right)n}\)
\(=-\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{n\left(4+n\right)}\right)\)
\(=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{n}-\frac{1}{n+4}\right)\)
\(=-\left(1-\frac{1}{n+4}\right)\)
\(=-\left(\frac{n+4}{n+4}-\frac{1}{n+4}\right)\)
\(=-\frac{n+3}{n+4}\)
a) \(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{5}=\frac{2}{10}=\frac{1}{5}\)
b) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}\)
\(=1-\frac{1}{17}=\frac{16}{17}\)
hok tốt ...
a)\(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+\frac{2}{8\cdot10}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(A=\frac{2}{5}\cdot\frac{1}{2}=\frac{1}{5}\)
b)\(B=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}=1-\frac{1}{17}=\frac{16}{17}\)
\(B=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{41.45}\)
\(4B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{41}-\frac{1}{45}\)
\(4B=\frac{44}{45}\)
\(B=\frac{11}{45}\)
\(B=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{41.45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{44}{45}\)
\(=\frac{11}{45}\)
Giải:
4B = 4(1.5 + 5.9 + 9.13 + ... + 93.97 + 97.101) 4B = 4.1.5 + 4.5.9 + 4.9.13 + ... + 4.93.97 + 4.97.101
4.1.5 = (4.1 + 1).5 - 1.5 = 5² - 1.5 4.5.9 = (4.5 + 1).9 - 5.9 = 9² - 5.9 ... 4.97.101 = (4.97 + 1).101 - 97.101 = 101² - 97.101
thay vào 4B ta được:
4B = (5² - 1.5) + (9² - 5.9) + ... + (101² - 97.101)
4B = 101² - 1.5
4B = 10201 - 5 = 10196
B = 10196 : 4 = 2549
Vậy tổng B = 2549.
mình không chắc nhé, bạn có thể tham khảo.