K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2024

`(3x + 3)^2022 + |x+y+2| = 0`

Do `{((3x + 3)^2022 >=0 ),( |x+y+2| >=0):}`

`=> (3x + 3)^2022 + |x+y+2| >= 0`

Dấu = có khi: 

`{((3x + 3)^2022 =0 ),( |x+y+2| =0):}`

`=> {(3x + 3 =0 ),( x+y+2 =0):}`

`=> {(x = -1 ),( -1+y+2 =0):}`

`=> {(x = -1 ),( y=-1):}`

Khi đó: `B = (-1)^2022 + (-1)^2023 = 1 + (-1) = 0`

 

12 tháng 10 2024

bằng ắc quy fi fai :)

 

DD
16 tháng 3 2022

\(\left(x-y\right)\left(x+y\right)+5x=5y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+5\right)=0\)

\(\Leftrightarrow x-y=0\)(vì \(x,y>0\)nên \(x+y+5>0\)

\(\Leftrightarrow x=y\)

\(A=27\left(y-x\right)^{2021}-\left(x-5y\right)^2+16y^2+2022\)

\(=-\left(4y\right)^2+16y^2+2022=2022\)

16 tháng 3 2022

\(\left(x-y\right)\left(x+y\right)+5x=5y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+5x-5y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+5\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y+5=0\end{cases}\left(1\right)}\)

Ta có :

\(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)

\(\rightarrow x+y>0\)

\(\rightarrow x+y+5>0\)

Vậy \(x+y+5=0\)là vô lí

Khi đó : \(x-y=0\)

\(\Leftrightarrow x=y\)

\(A=27.\left(y-x\right)^{2021}-\left(x-5y\right)^2+16y^2+2022\)

\(=27\left(y-y\right).2021-\left(-4y\right)^2+16y^2+2022\)

\(=16y^2+16y^2+2022\)

\(=2022\)

Vậy \(A=2022\)

22 tháng 4 2016

thay x=1;y=-1;z=2,ta có:

1*(-1)+(-1)*(-1)2*22+23*13

=(-1)+(-1)*1*4+8*1

=(-1)+(-1)*4+8

=(-1)+(-4)+8

=3

vậy biểu thức trên có giá trị là 3

22 tháng 4 2016

thay vào rồi tính là ra

10 tháng 12 2015

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)

M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

Đề sai nhé  mẫu mũ 2010  => M =1  mới đúng

21 tháng 3 2018

a/ /x/=1/3 => \(x=\pm\frac{1}{3}\)

+/ Với x=1/3 => \(A=3.\frac{1}{9}+2.\frac{1}{3}-1=\frac{1}{3}+\frac{2}{3}-1=\frac{3}{3}-1=1-1=0\)

+/ Với x=-1/3=> \(A=3.\frac{1}{9}-2.\frac{1}{3}-1=\frac{1}{3}-\frac{2}{3}-1=-\frac{1}{3}-1=-\frac{4}{3}=-1\frac{1}{3}\)

b/ Ta có: B=3x2y+6x2y2+3xy2 = 3xy(x+2xy+y)

Thay x=1/2 và y=-1/3 vào B ta được:

\(B=3\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)\left[\frac{1}{2}+2\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)-\frac{1}{3}\right]=-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{3}\right)=-\frac{1}{2}\left(\frac{1}{2}-\frac{2}{3}\right)\)

=> \(B=-\frac{1}{2}\left(-\frac{1}{6}\right)=\frac{1}{12}\)

30 tháng 3 2017

cho mk một tk đi bà con ơi

ủng hộ mk đi làm ơn

10 tháng 12 2015

Bài 20: 

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = x

=> x = y = z

mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)

\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

b) a + c = 2b

=> d(a + c) = 2bd

=> ad + cd = 2bd  (1)

Có: c(b + d) = 2bd

=> cb + cd = 2bd  (2)

(1);(2) => ad + cd = cb + cd

=> ad = cb

=> a/b = c/d

=> đpcm

đợi nghĩ nốt c đã

10 tháng 12 2015

ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à

25 tháng 2 2020

Đề bài này thiếu nhé : Phải là : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

Ta có : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-1\end{cases}}\)

Khi đó : \(A=\left(-1\right)^{2010}-2011\cdot\left(-1\right)^{2011}-\left(-1\right)^{2012}\)

\(=\left(-2011\right)\cdot\left(-1\right)=2011\)

Vậy : \(A=2011\) với x,y,z thỏa mãn đề.

19 tháng 5 2020

Viết đề cx "NGU"