Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
Số lượng số hạng:
\(\left(199-3\right):4+1=50\) (số hạng)
Tổng:
\(\left(3+199\right)\times50:2=5050\)
Lời giải:
$=(100^2-99^2)+(98^2-97^2)+....+(2^2-1^2)$
$=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)$
$=100+99+98+97+...+2+1=100(100+1):2=5050$
Ta có \(\left(a^{201}+b^{201}\right)^2=\left(a^{200}+b^{200}\right)\left(a^{202}+b^{202}\right)\Leftrightarrow2a^{201}b^{201}=a^{200}b^{202}+a^{202}b^{200}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\).
Khi đó \(a^{200}=a^{201}\Leftrightarrow a=1\).
Do đó P = 2.
ta có: a200 + b200 = a201 + b201 = a202 + b202
-----> a200 + b200 + a202 + b202 = 2.a201 + 2.b201
-----> a200 - 2.a201 + a202 + b200 - 2.b201 + b202 = 0
----> a200.(1-a)2 + b200. (1-b)2 = 0
mà \(a^{200}.\left(1-a\right)^2\ge0;b^{200}.\left(1-b\right)^2\ge0.\)
a và b là các số thực không âm
----> (1-a)2 = 0 ----> a = 1
(1-b)2 = 0 ----> b= 1
----> B =a2019 + b2020 = 1+1 = 2
GIẢI
\(a^{200}+b^{200}=a^{201}+b^{201}\)
\(\Rightarrow a^{200}\left(a-1\right)+b^{200}\left(b-1\right)=0\left(1\right)\)
\(a^{201}+b^{201}=a^{202}+b^{202}\)
\(\Rightarrow a^{201}\left(a-1\right)+b^{201}\left(b-1\right)=0\left(2\right)\)
Ta lấy ( 2 ) - ( 1 ) suy ra :
\(\left(a-1\right)\left(a^{201}-a^{200}\right)+\left(b-1\right)\left(b^{201}-b^{200}\right)=0\)
\(\Leftrightarrow a^{200}\left(a-1\right)^2+b^{200}\left(b-1\right)^2=0\)
Ta thấy : \(a^{200}\left(a-1\right)^2\ge0;b^{200}\left(b-1\right)^2\ge0\) với mọi a , b
Do đó để tổng của chúng bằng 0 thì :
\(a^{200}\left(a-1\right)^2=b^{200}\left(b-1\right)^2=0\)
\(\Rightarrow a=0\) hoặc \(a=1\) ; \(b=0\) hoặc \(b=1\)
Suy ra \(\left(a,b\right)=\left(1,1\right);\left(0,0\right);\left(1,0\right);\left(0,1\right)\)
\(\Rightarrow B=a^{2019}+b^{2020}\) có thể nhận những giá trị \(0;2;1\)
Chúc bạn học tốt !!!
40401
cach giai thi vao phan doc them se thay cach giai cua minh
a, A = 1002 - 992 + 982 - 972 +...+ 22 - 12
A = (1002 - 992) + (982 - 972) +...+ (22 - 1)2
A = (100 - 99)(100+99) + (98-97)(98+97)+..+(2-1)(2+1)
A = 1.199 + 1.195 + 1.191 +...+1.3
A = 3 + ...+191+ 195 + 199
Dãy số trên là dãy số cách đều với khoảng cách là: 199 -195=4
Dãy số trên có số hạng là: (199 - 3): 4 + 1 = 50 (số )
A = (199 +3) \(\times\) 50 : 2 = 5050
bn muốn hỏi jv ạ
Đề đen sì sì cô không nhìn rõ được câu hỏi, em ơi!