K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(2\cdot16>=2^n>4\)

=>\(2^5>=2^n>2^2\)

=>2<n<=5

mà n là số tự nhiên

nên \(n\in\left\{3;4;5\right\}\)

b: \(9\cdot27< =3^n< =243\)

=>\(243< =3^n< =243\)

=>\(3^n=243\)

=>n=5

c: \(27< 3^n< 3\cdot81\)

=>\(3^3< 3^n< 3^5\)

=>3<n<5

mà n là số tự nhiên

nên n=4

d: \(4^{15}\cdot9^{15}< 2^n\cdot3^n< 18^{16}\cdot2^{16}\)

=>\(36^{15}< 6^n< 36^{16}\)

=>\(6^{30}< 6^n< 6^{32}\)

=>30<n<32

mà n là số tự nhiên

nên n=31

17 tháng 7

\(a.2\cdot16\ge2^n>4\\ 2\cdot2^4\ge2^n>2^2\\ 2^5\ge2^n>2^2\\ 5\ge n>2\\ n\in\left\{3;4;5\right\}\\ b.9\cdot27\le3^n\le243\\ 3^2\cdot3^3\le3^n\le3^5\\ 3^5\le3^n\le3^5\\ n=5\\ c.27< 3^n< 3\cdot81\\ 3^3< 3^n< 3\cdot3^4\\ 3^3< 3^n< 3^5\\ 3< n< 5\\ n=4\\ d.4^{15}\cdot9^{15}< 2^n\cdot3^n< 18^{16}\cdot2^{16}\\ 36^{15}< 6^n< 36^{16}\\ \left(6^2\right)^{15}< 6^n< \left(6^2\right)^{16}\\ 6^{30}< 6^n< 6^{32}\\ n=31\)

4 tháng 12 2018

9.27 ≤ 3n ≤ 243 ⇒ 32.33 ≤ 3n ≤ 35

⇒ 35 ≤ 3n ≤ 35 ⇒ n = 5

4 tháng 8 2023

\(4^{15}.9^{15}=\left(4.9\right)^{15}=36^{15}=\left(6^2\right)^{15}=6^{30}\\ 18^{16}.2^{16}=\left(18.2\right)^{16}=36^{16}=\left(6^2\right)^{16}=6^{32}\\ Vậy:2^n.3^n=6^n\\ Vậy:6^{30}< 6^n< 6^{32}\\ Vậy:n=31\)

8 tháng 9 2018

a) ta có 2.16\(\ge\)2n > 4

    \(\rightarrow\)2.24\(\ge\)2n>22

    \(\rightarrow\) 25\(\ge\)2n>22

\(\Rightarrow\) n\(\in\){ 3;4;5}

b) làm tương tự

11 tháng 7 2018

2.16 ≥ 2n > 4 ⇒ 2. 24 ≥ 2n > 22

⇒ 25 ≥ 2n > 22

⇒ 5 ≥ n > 2

⇒ n ∈ {3; 4; 5}

27 tháng 7 2015

a. 2.16 \(\ge\)2n>4

=> 32 \(\ge\)2n>4

=> 25 \(\ge\)2n>22

=> n \(\in\left\{3;4;5\right\}\)

b. \(9.27\le3^n\le243\)

=> \(243\le3^n\le243\)

=> \(3^5\le3^n\le3^5\)

=> n=5

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40