Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b là 2 nghiệm của phương trình x 2 + mx + 1 = 0 nên theo định lí Vi-et ta có:
Vì b,c là 2 nghiệm của phương trình x 2 + nx + 2 = 0 nên theo định lí Vi-et ta có:
Khi đó:
(b – a)(b – c) = b 2 – bc – ab + ac
= b 2 + bc + ab + ac – 2(ab + bc)
= b( b + c) + a (b + c) – 2 (ab + bc)
= (b + c )( b + a) – 2 (ab + bc)
= (-n).(-m) – 2(1 + 2)
= nm – 6
Do x0 là một nghiệm của phương trình nên \(x_0^2+mx_0+n=0\Rightarrow n=-mx_0-x_0^2\)
Thế vào phương trình (2) ta có: \(m^2+\left(-mx_0-x_0^2\right)^2=2017\)
\(\Rightarrow m^2+m^2x_0^2+2mx_0^3+x_0^4-2017=0\)
\(\Rightarrow\left(1+x_0^2\right)m^2+2x_0^3m+\left(x_0^4-2017\right)=0\left(1\right)\)
Để pt (1) có nghiệm thì \(\Delta'\ge0\Rightarrow\left(x_0^3\right)^2-\left(1+x_0^2\right)\left(x_0^4-2017\right)\ge0\)
\(\Rightarrow-x_0^4+2017x_0^2+2017\ge0\)
\(\Rightarrow0\le x_0^2< 2018\Rightarrow\left|x_0\right|< \sqrt{2018}\left(đpcm\right)\)
Theo hệ thức Vi - ét
=> a+ b = - m và a.b = 1
b + c= - n và b.c = 2
Ta có : m .n = (-m). (-n) = (a+b). (b +c)
= [(b - a) + 2a)]. [(b- c) + 2c)] = (b - a).( b - c) + 2c( b - a) + 2a.( b - c) + 4ac
= (b - a).( b - c) + 2bc - 2ac + 2ab - 2ac + 4ac
= (b - a).( b - c) + 2.2 + 2.1 = (b - a).( b - c) + 6
=> (b - a).( b - c) =m.n - 6 (ĐPCM)
a: Khi m=5 thì (1) sẽ là: x^2+5x+4=0
=>x=-1; x=-4
b: Sửa đề: Q=x1^2+x2^2-4x1-4x2
Q=(x1+x2)^2-2x1x2-4(x1+x2)
=m^2-2(m-1)-4(-m)
=m^2-2m+2+4m
=m^2+2m+2=(m+1)^2+1>=1
Dấu = xảy ra khi m=-1
\(\Delta'=m^2-\left(m^2-1\right)=1>0\) nên pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2mx_1+m^2-1=0\)
\(\Leftrightarrow x_1^2-2mx_1+m^2=1\)
\(\Rightarrow x_1^3-2mx_1^2+m^2x_1=x_1\)
\(\Rightarrow x_1^3-2mx_1^2+m^2x_1-2=x_1-2\)
Hoàn toàn tương tự, ta có: \(x_2^3-2mx_2^2+m^2x_2-2=x_2-2\)
Giả sử pt \(y^2+by+c=0\) nhận \(x_1-2\) và \(x_2-2\) là nghiệm
\(\Rightarrow\left\{{}\begin{matrix}x_1-2+x_2-2=-b\\\left(x_1-2\right)\left(x_2-2\right)=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2-4=-b\\x_1x_2-2\left(x_1+x_2\right)+4=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=-b\\m^2-1-4m+4=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-\left(2m-4\right)\\c=m^2-4m+3\end{matrix}\right.\)
Vậy pt đó có dạng: \(x^2-\left(2m-4\right)x+m^2-4m+3=0\)
Anh ơi,anh đã có ai nhận được rồi nhé. Em xin nghỉ được vào cao điểm của bạn chưa mình đi.
Cgv ạ???