K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

Để chứng tỏ rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên, chúng ta có thể sử dụng phương pháp giả sử đối chứng.

Giả sử rằng dãy giá trị này là số tự nhiên, tức là tất cả các phần tử trong dãy đều là các số tự nhiên. Ta xem xét phần tử cuối cùng của dãy, tức là 2022/2023^3.

Nếu 2022/2023^3 là số tự nhiên, thì 2022/2023^3 + 1 cũng phải là số tự nhiên.

Tuy nhiên, nếu ta tính giá trị của biểu thức 2022/2023^3 + 1,

ta sẽ có: 2022/2023^3 + 1 = (2022 + 2023^3) / 2023^3

Với các giá trị số học, ta biết rằng tỷ số của hai số nguyên không thể tạo ra một số nguyên khác. Do đó, biểu thức trên không thể là số tự nhiên.

Vậy, ta có thể kết luận rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên.

11 tháng 5 2023

Ta có thể viết lại M dưới dạng:

M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)

= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]

= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)

= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)

Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có

1/n³ > 1/(n+1)³

Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,

1/2³ > 1/3³
1/3³ > 1/4³

1/2022³ > 1/2023³

Vậy ta có

M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³

Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.

Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:

S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³

Với mọi số nguyên dương n, ta có:

1/n³ < 1/n(n-1)

Do đó,

1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...

1/2023³ < 1/(2023x2024)

Tổng các số hạng bên phải có thể được viết lại dưới dạng:

1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1

Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.

   
1 tháng 11 2024

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0

bài 1 cho S= 3^0 + 3^2 + 3^4 + 3^6 +...+ 3^2002 a. Chứng tỏ rằng giá trị của biểu thức S chia hết cho 7. b. So sánh S và 3^2003 + 1/2 bài 2: tìm x (x - 5 )^2023 = ( x - 5 )^2021 bài 3: Trong đợt ủng hộ học sinh các trường gặp khó khăn ở vùng cao. Trường THCS Võ Thị sáu đã quyên góp được 144 cặp sách , 252 quyển vở và 360 hộp bút. Được chia thành các thùng quà mà trong đó số cặp sách , số quyển vở và số...
Đọc tiếp
bài 1 cho S= 3^0 + 3^2 + 3^4 + 3^6 +...+ 3^2002 a. Chứng tỏ rằng giá trị của biểu thức S chia hết cho 7. b. So sánh S và 3^2003 + 1/2 bài 2: tìm x (x - 5 )^2023 = ( x - 5 )^2021 bài 3: Trong đợt ủng hộ học sinh các trường gặp khó khăn ở vùng cao. Trường THCS Võ Thị sáu đã quyên góp được 144 cặp sách , 252 quyển vở và 360 hộp bút. Được chia thành các thùng quà mà trong đó số cặp sách , số quyển vở và số hộp bút trong mỗi thùng quà là như nhau Hỏi: a) Có bao nhiêu chia thùng (số thùng lớn hơn 3) b) Cách chia nào mà số cặp sách , số quyển vở , số hộp bút trong mỗi thùng là ít nhất . Khi đó số cặp sách , số vở và số hộp bút trong mỗi thùng quà là bao nhiêu? bài 4: Tìm tất các số tự nhiên n thỏa mãn (5n + 29) : (n + 2) ( : là chia hết ) giúp mik mấy bài này vớiiii mik
1
23 tháng 10 2023

Đay là của lp 6 ư, nhìn ko hỉu j cả

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu