K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4

A=1/2^2+1/3^2+...+1/23^2

=>A<1-1/2+1/2-1/3+...+1/22-1/23

=>A<22/23

12 tháng 4

tổng tử số =1+3+5+...+23 

=\(\dfrac{24}{2}\)x(1+23)

=12.24

=288 

tổng mẫu số=529 

tổng chuỗi phân số=\(\dfrac{tongtuso}{tongmauso}\)

=\(\dfrac{288}{529}\)

=\(\dfrac{144}{265}\)

<\(\dfrac{22}{23}\)

vậy ta chứng minh được rằng:

1/4+1/9+1/16+...1/529<22/23

A=1/2^2+1/3^2+...+1/23^2

=>A<1-1/2+1/2-1/3+...+1/22-1/23

=>A<22/23

12 tháng 9 2021

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

Cảm ơn bạn/chị nhé ạ!!!Thankyou very much!!!

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2021

Lời giải:

$\frac{1}{4}< \frac{1}{1.2}$

$\frac{1}{9}< \frac{1}{2.3}$

$\frac{1}{16}< \frac{1}{3.4}$

....

$\frac{1}{2500}< \frac{1}{49.50}$

Cộng theo vế:

$A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1$

Ta có đpcm.

4 tháng 1 2022

Em cần làm gì để bảo tồn nề văn hóa Sa Huỳnh  
Giải câu này giùm em với ạ

 

8 tháng 4 2023

1)\(\dfrac{2}{9}+\dfrac{-3}{4}+\dfrac{5}{30}\)

\(=\dfrac{2.20}{9.20}+\dfrac{-3.45}{4.45}+\dfrac{5.6}{30.6}\)

\(=\dfrac{40}{180}+\dfrac{-135}{180}+\dfrac{30}{180}\)

\(=\dfrac{40+\left(-135\right)+30}{180}\)

\(=\dfrac{-65}{180}\)

\(=\dfrac{-13}{36}\)

2)\(\dfrac{-7}{12}-\dfrac{11}{18}\)

\(=\dfrac{-7.3}{12.3}-\dfrac{11.2}{18.2}\)

\(=\dfrac{-21}{36}-\dfrac{22}{36}\)

\(=\dfrac{-21-22}{36}\)

\(=\dfrac{-43}{36}\)

3)\(\dfrac{7}{8}-\dfrac{-5}{16}\)

\(=\dfrac{7.2}{8.2}-\dfrac{-5}{16}\)

\(=\dfrac{14}{16}-\dfrac{-5}{16}\)

\(=\dfrac{14-\left(-5\right)}{16}\)

\(=\dfrac{19}{16}\)

4)\(\dfrac{3}{8}-\dfrac{-9}{10}-\dfrac{5}{16}\)

\(=\dfrac{3.10}{8.10}-\dfrac{-9.8}{10.8}-\dfrac{5.5}{16.5}\)

\(=\dfrac{30}{80}-\dfrac{-72}{80}-\dfrac{25}{80}\)

\(=\dfrac{30-\left(-72\right)-25}{80}\)

\(=\dfrac{77}{80}\)

 

 

8 tháng 4 2023

1)` 2/9 + -3/4 + 5/30= (40+(-135) + 30 )/180 = -65/180 = -13/36`

 

2) `-7/12 - 11/18=(-21)/36 - 22/36 = -43/36 `

 

3) `7/8 - (-5)/16=14/16- (-5)/16 = 19/16 `

 

4) `3/8 - (-9)/10 - 5/16= (30- (-72) -25)/80=77/80`

17 tháng 8 2023

a, \(\dfrac{1}{2}\) - ( - \(\dfrac{1}{3}\) ) + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)

 =  \(\dfrac{5}{6}\)  + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)

= 1 + \(\dfrac{1}{23}\)

 = \(\dfrac{24}{23}\) 

b, \(\dfrac{11}{24}\) - \(\dfrac{5}{41}\) + \(\dfrac{13}{24}\) + 0,5 - \(\dfrac{36}{41}\)

= (\(\dfrac{11}{24}\) + \(\dfrac{13}{24}\)) - ( \(\dfrac{5}{41}\) + \(\dfrac{36}{41}\)) + 0,5

= 1 - 1 + 0,5

= 0,5 

 

17 tháng 8 2023

c,\(-\dfrac{1}{12}-\left(\dfrac{1}{6}-\dfrac{1}{4}\right)\)

=\(-\dfrac{1}{12}-\left(-\dfrac{1}{12}\right)\)

=0

d, \(\dfrac{1}{6}-\left[\dfrac{1}{6}-\left(\dfrac{1}{4}+\dfrac{9}{12}\right)\right]\)

\(\dfrac{1}{6}-\left[\dfrac{1}{6}-1\right]\)

\(\dfrac{1}{6}-\left(-\dfrac{5}{6}\right)\)

= 1

i don't now

mong thông cảm !

...........................

25 tháng 7 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

nhiều qá lm sao nổi

25 tháng 5 2020

b,A= \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

\(=(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{40})+(\dfrac{1}{41}+...+1...\)
\(=(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40})+(40/...\)
\(20(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...\dfrac{1}{39.40})+40(\dfrac{1}{40}...\)
\(20(\dfrac{1}{20}-\dfrac{1}{40})+40(\dfrac{1}{40}-\dfrac{1}{60})>\dfrac{11}{15}\)
Lại có \(A<40(\dfrac{1}{20.21}+...\dfrac{1}{39.40})+60(\dfrac{1}{40.41}+...+...\)
\(=40(\dfrac{1}{20}-\dfrac{1}{40})+60(\dfrac{1}{40}-\dfrac{1}{60})<\dfrac{3}{2}\)

=> \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

25 tháng 5 2020

a,\( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\)

= \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+...+ \dfrac{1}{196} < \dfrac{1}{2^2-1}+ \dfrac{1}{4^2-1}+ \dfrac{1}{6^2-1}+...+ \dfrac{1}{14^2-1}\)

= \( \dfrac{1}{1.3}+ \dfrac{1}{3.5}+ \dfrac{1}{5.7}+...+ \dfrac{1}{13.15}\)

= \( \dfrac{1}{2}(1- \dfrac{1}{3}+ \dfrac{1}{3}- \dfrac{1}{5}+ \dfrac{1}{5}- \dfrac{1}{7}+ \dfrac{1}{7}-...- \dfrac{1}{13}+ \dfrac{1}{13}- \dfrac{1}{15})\)

= \( \dfrac{1}{2}(1- \dfrac{1}{15})< \dfrac{1}{2}\)

Vậy \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\) \(<\dfrac{1}{2} \)